

DATABOOK

MOS

1980

MOS DATABOOK

NATIONAL SEMICONDUCTOR

National Semiconductor

Electronic Data Processing

MM57109 MOS/LSI Number-Oriented Processor

General Description

The MM57109 is an MOS/LSI number-oriented processor (actually, a pre-programmed single-chip microcomputer member of National's COP family) intended for use in number processing applications. Scientific calculator functions, test and branch capability, internal number storage, and input/output instructions have been combined in this single chip device. Programming is done in calculator keyboard level language which simplifies software development. Generated code is more reliable because algorithms are preprogrammed in an on-chip ROM. Data or instructions can be synchronous or asynchronous; I/O digit count, I/O notation mode, and error control are user programmable; a sense input and flag outputs are available for single bit control.

The MM57109 can be used as a stand-alone processor with external ROM/PROM and program counter (PC). Alternatively it can be configured as a peripheral device on the bus of a microprocessor or minicomputer.

Applications

- Instruments
- Microprocessor/minicomputer peripheral
- Test equipment
- Process controllers

Features

- Scientific calculator instructions (RPN)
 - Up to 8-digit mantissa, 2-digit exponent
 - Four-register stack, one memory register
 - Trigonometric functions, logarithmic functions, Y^{X} , e^{X} , π , etc.
 - Error flag generation and recovery
- Flexible input/output
 - HOLD input allows asynchronous instructions or single stepping
 - Asynchronous digit input instruction (AIN) with data ready (ADR) input
 - Multidigit I/O instructions (IN, OUT) with floating point or scientific notations
 - Programmable mantissa digit count for IN, OUT instructions
 - Sense input and flag outputs
- Branch control
 - Conditional and unconditional program branching
 - Increment/decrement branch on non-zero for program loops
- Interface simplicity
 - Single ϕ clock
 - Low power operation
 - Generates all I/O control signals
 - Separate digit input, output, and address buses

TABLE I. FEATURE COMPARISON OF LSI NUMBER PROCESSING CHIPS

FUNCTION	CALCULATOR	MM57109	MICRO- PROCESSOR
1/0	Keyboard display	Multidigit asynchronous digit single bit	Data bytes single bit
I/O Keyboard display asynchronous digit single bit Data single bit Data format Floating point Scientific Notation Floating point Scientific Notation Bina Data length Fixed Variable (1 to 8 digit mantissa) Fixed Prøgram Key sequence External ROM/ PC, μP or FIFO Exter Speed (math 1 to 4500 0 for 5 to 500 0 for 5 to 500			
Data length	Fixed	Variable (1 to 8 digit mantissa)	Fixed
Program	Key sequence	External ROM/ PC, μP or FIFO	External ROM Internal PC
Speed (math or I/O operations)	14—1500 ms	0.5–1000 ms	0.5—1000 ms
Minimum number of chips for CPU and RAM	1–3	1 (external PC and program source)	2-6

Note: This data sheet is complete. It contains all necessary programming information and electrical interconnect details. The user should read this document thoroughly before proceeding.

5

Absolute Maximum Ratings

 $\label{eq:Voltage at Any Pin Relative to V_{SS} (All Other Pins Connected to V_{SS}) Ambient Operating Temperature Ambient Storage Temperature Lead Temperature (Soldering, 10 seconds)$

 V_{SS} + 0.3V to V_{SS} – 12V

0°C to +70°C --55°C to +125°C 300°C

DC Electrical Characteristics $0^{\circ}C \le T_A \le +70^{\circ}C$, $7.9V \le V_{SS} - V_{DD} \le 9.5V$ unless otherwise stated

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Operating Voltage (V _{SS} – V _{DD})		7.9	9.0	9.5	v
Operating Supply Current (IDD)	$V_{SS} - V_{DD} = 9.5V, T_A = 25^{\circ}C$ (Excluding Outputs)		12	18	mA
Osc. Input Voltage Levels Input High Level (VIH) Input Low Level (VIL)	Internal 6k Resistor to V _{SS} V _{SS} – V _{DD} = 7.9V V _{SS} – V _{DD} = 9.5V	V _{SS} -1.0		V _{DD} +1.5	v V
HOLD, POR Input Voltage Levels Input High Level (VIH) Input Low Level (VIL)	No Internal Resistors	V _{SS} -3.0	ананан 1997 — Ф	V _{DD} +1.5	v V
I ₁ —I6 Input Voltage Levels	Internal Resistors to V _{SS} (No Resistor for I ₆), (Note 1)		5. T		
Input High Level (VIH)		V _{SS} -1.0		Vcc-40	v v
INTERFACING WITH MOS OR CMOS		I		-33	L
All Outputs	External Resistor to V _{DD} = 10k-20k	4 P			
Output High Voltage (VOH) Output Low Voltage (VOL)		V _{SS} -1 V _{DD}		Vss V _{DD} +1	v v

AC Electrical Characteristics $0^{\circ}C \le T_A \le +70^{\circ}C$, $7.9V \le V_{SS} - V_{DD} \le 9.5V$ unless otherwise stated

PARAMETER	CONDITIONS (Note 2)	MIN	ТҮР	МАХ	UNITS
Osc. Input Frequency		320	400	400	kHz
Osc. Duty Cycle		46	56	66	%
Osc. Input					
Rise Time (t _r)	$C_{LOAD} = 25 pF$, $R_{LOAD} = 6 k\Omega$		1.1.1	350	ns
Fall Time (t _f)	RC = 0.15 μs			50	ns
Sync. Output Timing	CLOAD = 250 pF		1		
tB (1 Microcycle)		10.0		12.5	μs
^t pdsL		0.1		1.65	μs
^t pdsH	and the second	0.1		1.25	μs
tHS		0.1		0.8	μs
R/W, ISEL Output Timing					
^t pdf	C _{LOAD} = 100 pF			4.4	μs
DAS Output Timing	and the second				
^t pdDAS	CLOAD = 50 pF		1.1	4.4	μs
trDAS	$C_{LOAD} \le 20 \text{ pF}$	0.3			μs
DA1-DA4, BR Output Timing	CLOAD = 100 pF (DA1-DA4)	:			
tpdg	$C_{LOAD} = 250 pF (BR)$	0.5		4.0	μs
D01–D04, F1, F2, RDY, ERROR Output					
Timing					
^t pdK				6.0	μs

Note 1: An external resistor (5k–20k) can be tied at the I₆ input to V_{SS} to overcome internal load device to V_{DD} .

Note 2: See Figure 2 for timing diagrams of each of the following inputs/outputs.

5-287

Pinout and Block Diagrams

FIGURE 1

Note 1: See discussion of timing diagrams on page 5. Note 2: Osc. Duty Cycle = t_1 ($t_1 + t_2$) = t_1/t_p . Note 3: The last four timing diagrams indicate that, if the output changes, it will change within the indicated time. This is not meant to imply that these signals will change every microcycle. The conditions which will cause the various outputs to change are explained in detail in the functional description section of this manual.

Switching Time Waveforms

Timing Diagram Conventions

This data sheet makes extensive use of timing diagrams to illustrate electrical and logical characteristics of signal inputs and outputs. To avoid confusion concerning these diagrams, the following conventions have been adopted:

- 1. Time axis is horizontal, increasing to the right.
- Upper side of waveform represents logic "1" (V_{SS}). Lower side of waveform represents logic "0" (V_{DD}).

3. Lines appearing simultaneously at both logic "0" and logic "1" indicate that the state of the input or output is either "0" or "1", and does not change during this time. This is used when the logic state depends on exactly what the user is doing with the chip at the time, and thus is unknown to the person drawing the timing waveform.

4. Lines located at a level between logic "1" and logic "0" appear on input signals only, and indicate that the state of the input is a don't care during this time.

An "X" in a waveform indicates that the input or output may change state at this time.

This representation is often used for a group of inputs or outputs whose logic states are unknown, but the time at which a signal may change must be shown. Example:

 Minimum and/or maximum time values are sometimes specified. The interpretation of these values depends on whether the waveforms are inputs or outputs. Example:

The following table shows three different ways in which these timing diagrams can be interpreted, depending on whether min, max or both are specified.

PARA	METER	MIN	MAX	COMMENT
(A)	ta	3.7 μs		Input must be changed later than 3.7 μ s after point "A"
	tb	:	1.9 ms	Output 2 will go high no later than 1.9 ms after output 1 goes low
(B)	ta		2.4 ns	Input must be changed before 2.4 ns after point "A"
	t _b	0.7 s		Output 2 will not go high until at least 0.7 s after output 1 goes low
(C)	ta	0.6 μs	3.0 μs	Input must be changed between 0.6 and 3.0 μ s after point "A", no sooner and no later
	tb	0.01 μs	0.9 μs	Output 2 will go high between 0.01 and 0.9 μ s after output 1 goes low

This illustrates the various meanings that must be attached to time values, depending on whether they refer to inputs or outputs and whether minimum, maximum or min/max limits are placed on the value.

7. Rise and fall times are measured from maximum logic low to minimum logic high. For example, if the maximum logic low ("0") level ($V_{L}(MAX)$) of a signal is V_{DD} + 1V, and if the minimum logic high ("1") level ($V_{H}(MIN)$) is V_{SS} - 1.5V, then the rise time would be the time it takes the signal to go from V_{DD} + 1V to V_{SS} - 1.5V.

Timing diagrams are seldom shown to scale because of space limitations. However, they do show the proper relationship between waveforms. Consequently, the reader, when studying a timing diagram, should exercise care in understanding what information the timing diagram is meant to show, and ignore the time scale distortions that are necessarily introduced. Example:

Waveform relationships are maintained, so pulse A does come before B, and C and D occur at the same time. However, the time axis may be distorted, so pulse width E may not be twice that of pulse A. It may be 10 times, or even 1000 times wider.

Pinout Description

The MM57109 is intended for microprocessor number processing applications, either as a microcomputer peripheral chip or as a stand-alone processor. *Figure 1* shows a pinout diagram of the MM57109, giving the pin numbers and names of the signal lines. It also shows a functional block diagram illustrating the internal organization of the MM57109 and the origin of the signal lines that are used to communicate with the external world.

The MM57109 operates on a 9V power supply. In order to make it TTL compatible, it can be operated from supplies of 5V and -4V. The signal inputs are designed to respond properly to LPTTL logic levels (with the exception of OSC, HOLD and POR) when the MM57109 is operated in this fashion. (See electrical specifications and *Figure 3* for details on LPTTL interface).

A 400 kHz oscillator operating between V_{DD} and V_{SS} is required. The rise and fall times and frequency of this oscillator are not critical, making it relatively easy to generate. The MM57109 provides a SYNC output, which is a signal that goes active low once every 4 oscillator cycles. A single SYNC pulse corresponds to a single "microcycle" (about 10 μ s). The execution of a single MM57109 instruction involves thousands of microcycles. A later section of this manual will contain a tabulation of instruction execution times listed in microcycles.

The processor is reset by applying a reset pulse to the POR pin as shown in *Figure 6*. The chip will then set the various outputs to their proper levels and generate three ready pulses (RDY). These ready pulses are designed to provide for automatic processing of an error in standalone systems. (See section titled ERROR CONTROL.) A microcomputer system would ignore the first two RDY pulses and use the third one as a "Ready for Instruction" signal.

The MM57109 has 6 instruction inputs (I_6-I_1) which are used to provide it with a 6-bit instruction code (commonly referred to as an "op code"). Each op code corresponds to one of the MM57109 instructions. A list of instructions, their op codes, and a description of the operations they perform will be given later in this manual. The 6 instruction lines are shared by 6 data lines. The output ISEL identifies which function the 6 lines are performing. When ISEL = 1, the 6 lines are instruction lines $(I_{6}-I_{1})$. When ISEL = 0, the 6 lines are data lines, which are associated with the IN, AIN, and TJC instructions, will not be used. In these instances ISEL can be ignored. If the data lines are used, ISEL is the select input for six 2–1 multiplexers or an enable input to buffers, latches or ROMs. Later in this manual sample systems will be shown illustrating use of ISEL.

A ready output (RDY) goes high when the processor is ready to read a 6-bit instruction code. This output operates in conjunction with the HOLD input. When RDY goes high, it will remain high if HOLD = 1. If processor instructions are not always ready when RDY goes high, some method must be provided to set HOLD = 1. A microprocessor might have a flag output which holds HOLD = 1 until it is ready to pass an instruction to the processor. (If instructions are always ready when RDY goes high, the HOLD input can be tied to "0".) After RDY goes high, it will wait for HOLD = 0 and then go low again. At this time the 6-bit instruction code is read and the instruction is performed.

The branch output (BR) is a 4-microcycle active low pulse which signals that the result of a test instruction (e.g. TEST X = 0) was true. This pulse starts prior to RDY = 1 for the next instruction, and ends slightly after RDY = 1.

The four signals RDY, HOLD, ISEL and \overline{BR} were carefully chosen to allow the MM57109 to be used as a stand-alone processor or as a microcomputer peripheral. In a stand-alone system, RDY would be a clock for an external program counter (PC) whose outputs would address a ROM containing the MM57109 instructions. \overline{BR} would parallel load the PC, resulting in a program branch. In a microcomputer system, RDY would inform

FIGURE 3. Low Power TTL Interface

Pinout Description (Continued)

the microcomputer that the MM57109 is ready for a new instruction. HOLD would be used to inform the MM57109 that the microcomputer is not ready to respond to the MM57109.

Several instructions have conditions which will cause an error to occur. Table VI enumerates these conditions. When an error does occur, the MM57109 will set the ERROR output high. This output can be tested with the TERR instruction and cleared with the ECLR instruction.

The two outputs F1 and F2 are flags which are set by the instructions SF1 and SF2. They can also be pulsed active high with the instructions PF1 and PF2. These flag outputs could be used as single bit outputs from the MM57109.

The JC input is a general purpose single bit input. A TJC instruction will branch (i.e., result in a true condition causing a \overline{BR} pulse) if the input JC is high. Otherwise the TJC instruction will do nothing.

Table II summarizes this description of the MM57109 signal lines.

INPUTTING DATA

As shown in Figure 1, the MM57109 has an internal register file. Each of the 5 registers (X, Y, Z, T and M) has 8 mantissa digits, 2 exponent digits, a decimal point position indicator, and mantissa and exponent sign bits. Instructions operate on these registers. The instructions IN and OUT input and output numbers to and from the X register. There are two possible modes of operation for IN and OUT instructions. Floating point mode transfers mantissa digits, a mantissa sign digit, and a decimal point position digit. Scientific notation mode transfers mantissa digits, 2 exponent digits, a digit containing mantissa and exponent sign bits, and a decimal point position indicator. Initially the MM57109 is in the floating point mode. The TOGM instruction toggles to the opposite mode. The number of mantissa digits input or output by an IN or OUT instruction is equal to the mantissa digit count (MDC). The MDC is initially 8 and can be set to any value from 1 to 8 using the SMDC instruction. When an IN or OUT instruction is executed, the four DA outputs will sequence through values indicating which digit is to be input or output. The section of this manual entitled DATA FORMATS gives the values of the DA lines for each of the digits input or output by an IN or OUT instruction. During an OUT instruction, the four DO outputs provide the digit outputs, coded in BCD. The R/\overline{W} output is pulsed active low once for each digit. This R/W pulse can be used to write the data into a RAM or clock it into a latch. During an IN instruction, the four I lines (I4-I1), are data input lines for the digits to be input (and so are also named D4-D1). The same data format is used for IN as is used for OUT. The DAS output is pulsed active low prior to reading each digit. This DAS pulse can be used as a data request signal or to clock data into a latch.

The IN and OUT instructions have been designed to allow easy expansion of the internal register file. A 256×4 RAM will add an additional 16 registers for data storage. The DA lines are used to provide part of the RAM address. The rest of the address, which would specify one of the 16 registers, comes from the external instruction storage (ROM, microprocessor, etc). The DO lines are the input to the RAM, while the RAM outputs are multiplexed to the I lines, using ISEL to select between instructions or data. The processor R/\overline{W} line is the RAM R/\overline{W} signal.

There are three ways to input data to the MM57109. The first is the IN instruction which has already been described. Second is the AIN instruction, which inputs a single digit into the X register. Multiple AIN instructions will input more than one digit to the X register. since the AIN instruction does not cause termination of the number entry mode (number entry mode will be fully described later in this manual). The DA lines provide a digit address from 0 to 7 for multiple AIN instructions. The ADR input (shared with I6) is a data hold signal for AIN. If ADR is high during an AIN instruction, the processor will wait till it goes low, and then read the digit on D4-D1. Finally, the F2 output of the MM57109 will be pulsed active low as a read acknowledge signal. Note that only mantissa digits, not exponents or signs, can be entered with AIN.

For systems using a microcomputer with the MM57109 as a peripheral, it is likely that neither the IN nor the AIN instruction would be used. Instead, the third method of inputting data to the processor would be used. This method involves entering numbers as instructions. Using the instruction, etc., a number can be entered directly into the processor in the same manner as one presses keys to enter numbers into a calculator. The decimal point is to the right of the last digit entered unless it was fixed by a DP instruction. The EE instruction changes the sign of the mantissa (or exponent, if EE instruction was entered).

2-WORD INSTRUCTIONS

Several instructions are 2-word instructions, of which there are 4 types. Each type generates two RDY pulses, one for each word. The first type are the inverse instructions (inverse SIN, COS, TAN and inverse +, -, x, / for memory operations). These instructions require that the INV instruction first be executed, followed by the desired instruction (SIN, COS, etc.). The second type is the SMDC instruction. The second word of this instruction is the mantissa digit count, a BCD number from 1 to 8. The third type is the IN and OUT instructions. The second word of these instructions is a high order address for a RAM or a device select code. It is not necessary to use the second word of IN or OUT instructions because the MM57109 ignores it, providing only a RDY pulse that may or may not be used by external hardware. The final type of 2-word instructions are the branch instructions. The second word of these instructions is intended to be a branch address to be loaded into an external program counter in stand-alone systems. For a microprocessor system, the second RDY pulse can be used to clock the BR output into a latch. The latch can then be tested to discover if the branch condition was true $(\overline{BR} = 0)$ or false $(\overline{BR} = 1)$. Many microcomputer applications will not use the branch instructions, since testing and branching is often more easily done within the external microprocessor itself.

MM57109

Pinout Description (Continued)

TABLE II. MM57109 PIN DESCRIPTION

ABBREVIATED NAME	PIN NUMBER	FUNCTIONAL NAME	DESCRIPTION
V _{SS} , V _{DD}	15, 21	V _{SS} , V _{DD} (Power Supply)	$V_{SS} = V_{DD} + 9V$ nominally (see electrical specifications) (V _{SS} = Logic "1", V _{DD} = Logic "0").
POR	11	Power On Reset (Input)	An 8-microcycle or longer active high pulse at this input will initialize the MM57109. It then sets $R/W =$ 1, other outputs = 0, and generates three RDY pulses before reading first instruction. HOLD must be 0 to complete each RDY pulse.
osc	7	Oscillator (Input)	Single ϕ clock with frequency 4X microcycle time. Typical frequency is 400 kHz.
SYNC	6	Sync (Output)	Active low output pulse once each microcycle.
RDY	12	Ready (Output)	Rising edge indicates processor is ready to execute next instruction or get second word of 2-word in- struction. If $HOLD = 0$, RDY goes low again and next instruction is executed. If $HOLD = 1$, RDY stays high until $HOLD = 0$. (See <i>Figure 8</i>). RDY can be used to clock an external program counter or to
HOLD	9	Hold (Input)	request an instruction from another CPU. When set high prior to or at the rising edge of RDY, RDY will be held high and instruction execution delayed until HOLD is set low.
BR	23	Branch (Output)	A 4-microcycle active low pulse indicates a program branch. RDY goes high during this pulse. BR may be used as a load signal for an external PC or as a sense input to a microprocessor.
ISEL	8	Instruction Select (Output)	Selects 6 bit instruction code (ISEL = 1) or JC, \overline{ADR} , D4-D1 (ISEL = 0) on 1_6-1_1 (the 6 input lines).
R/₩	10	Read/Write (Output)	Pulsed active low during OUT instruction to write data digits into a RAM or register. Address and data are valid at both edges. R/\overline{W} is also pulsed during a PRW1 or PRW2 instruction.
I ₆ , JC	24	Input 6, Jump Condition (Input)	Most significant instruction bit when ISEL = 1. Jump condition for TJC instruction when ISEL = 0. (JC = 1 indicates jump condition true.)
I5, ADR	5	Input 5, AIN Data Ready (Input)	Instruction bit 5 when ISEL = 1. AIN Data Ready (ADR) for AIN instruction when ISEL = 0, (ADR = 0 for data ready).
I4−I ₁ , D4−D1	4, 3, 2, 1	Inputs 4—1, Data 4—1 (Inputs)	Instruction bits $4-1$, or mantissa digit count on second word of SMDC instruction, when ISEL = 1. Digit data (AIN or IN instructions) when ISEL = 0. Bit 4 is the most significant bit.
DA4–DA1	25, 26, 27, 28	Digit Address 4—1 (Outputs)	Digit address for AIN, IN, and OUT instructions. Used as multiplex selector (AIN) or as low order ad- dress (IN, OUT) for RAM or other I/O device. Bit 4 is the most significant bit. Set to 0 after each IN, OUT or AIN instruction.
DAS	22	Digit Address Strobe (Output)	Active low pulse indicates digit address is changing. New address is valid on second (positive-going) edge.
DO4-DO1	20, 19, 18, 17	Digit Outputs 4—1 (Outputs)	BCD digit output for OUT instruction. Set to 0 after each OUT instruction. Bit 4 is the most significant bit.
F1	16	Flag 1 (Output)	User controlled flag can be set or pulsed (reset if set).
F2	14	Flag 2 (Output)	User controlled flag can be set or pulsed (reset if set). Active low pulse (set if reset) generated after each AIN data read. This can be used as an acknowledge signal to clear a flip-flop.
ERROR	13	Error Flag (Output)	Set on an arithmetic or OUT error. Reset by ECLR instruction. See ERROR CONTROL for more information.

Functional Description

OSCILLATOR GENERATION

Figure 4 shows a simple circuit for generation of the MM57109 oscillator.

INITIALIZATION SEQUENCE

Figure 5 shows a flowchart and Figure 6 a timing diagram of the MM57109 initialization sequence which occurs when the POR input is set high for at least 8 clock periods.

 $f_{OSC} \cong 400 \text{ kHz}$ $T_{OSC} \cong 2.5 \,\mu \text{s}$

MM57109

INSTRUCTION FETCH AND EXECUTION

Figure 7 shows a flowchart and Figure 8 shows a timing diagram of the instruction fetch and execution sequence.

After initialization (POR) or the completion of an instruction, the processor raises RDY to signal the instruction store device that the processor is ready for the next instruction word. The instruction store device could be a semiconductor memory, host CPU, or an asynchronous device of some kind. If the instruction store is not ready to respond within the required access time (8 microcycles), it must raise the HOLD input to delay the instruction word fetch. HOLD may be set high any time while RDY is low, or at the leading edge of RDY. When HOLD goes low the processor will lower RDY and begin instruction execution. The instruction word must remain valid while RDY is low.

During program branches, skips, or fetching of the second word of a 2-word instruction, the RDY/HOLD sequence is the same as discussed above. (See flowchart in *Figure 7* and timing diagram in *Figure 8(e)*.)

(e) RDY-HOLD Relationship for 1 and 2-Word Instructions

FIGURE 8. MM57109 Instruction Fetch and Execution Timing Diagrams

5-295

5°

MM57109 INSTRUCTION SET

The MM57109 has 70 instructions available to the user. The 70 instructions are classed into digit entry, move, math, clear, branch, input/output, and mode control instructions. Table III contains a detailed description of these instructions. *Figure 9* shows the instruction format. Table IV contains a summary of the instructions. Note that all arithmetic instructions operate on 8-digit mantissa/2-digit exponent numbers, regardless of mantissa digit count or notation mode. Accuracy of all instructions is 7 digits. Computations are performed internally with 9 digits, then rounded to 8. The eighth digit is accurate to ± 5 .

NUMBER ENTRY

When a digit, decimal point, or π is entered with an AIN, 0-9, DP, or PI instruction, the stack is first pushed and the X register cleared: $Z \rightarrow T$, $Y \rightarrow Z$, $X \rightarrow Y$, $O \rightarrow X$. This process is referred to as "initiation of number entry." Following this, the entered digit and future digits are loaded into the X mantissa. Subsequent entry of digits or DP, EE, or CS instructions do not cause initiation of number entry. Digits following the eighth mantissa digit are ignored. (CAUTION: An internal error will occur if more than 8 digits are entered with AIN instruction, or if a non-BCD digit is entered. Note that the ERROR flag with not be set if this happens. A POR sequence will be necessary to restart the processor.) This number entry mode is terminated by any instruction except 0-9, DP, EE, CS, PI, AIN or HALT. Termination of number entry means two things. First, the number is

normalized by adjusting the exponent and decimal point position so that the decimal point is to the right of the first mantissa digit. Second, the next digit, decimal point, or π entered will again cause initiation of number entry, as already described. There is one exception to this number entry initiation rule: the stack is *not* pushed if the instruction prior to the entered digit was an ENTER. However, the X register is still cleared and the entered digit put in X.

The IN instruction enters *all* digits of a number. Therefore, IN does not cause initiation of number entry. However, it does terminate number entry mode if the processor is in this mode before the IN instruction is executed. This means the user can mix 0-9, AIN and IN instructions without performing an ENTER before an IN.

The IN instruction will always push the stack prior to inputting digits unless the previous instruction was ENTER. This allows multiple IN instructions to be executed without performing an ENTER between them.

INSTRUCTION TIMING

Table V shows execution times of each instruction. These times are shown in microcycles, 1 microcycle being equal to 1 SYNC period (approximately 10 μ s). Figure 10 shows timing diagrams illustrating the dynamic characteristics of execution of each type of instruction, assuming HOLD = 0.

SINGLE WORD INSTRUCTIONS	2-WORD INSTRUCTIONS
	2 1 16 15 14 13 12 11 EH OP CODE
2 1 16 15 14 13 12 11 EH OP CODE	2 1 16 15 14 13 12 11 EH OP CODE; ADDRESS, OR MDC
The "OP CODE" is a 6-bit operation code (see Table III) which specifies which instruction is to be performed.	The first word has the same format as a 1-word instruction.
The MM57109 requires only the OP CODE to function. However, memory devices with 8-bit word sizes are often used. The extra two bits, here designated "EH"	The function and format of the second word depends on the OP CODE of the first word: (a) First word = SMDC instruction. The second word
for "external hardware", could be used for device	contains the MDC $(1-8)$.
selection on AIN instructions, etc.	(b) First word = IN or OUT instruction. The second word contains a high-order address for RAM or I/O device (low-order address from DA lines).
	(c) First word = INV instruction. The second word contains the second OP CODE for the instruction (M+, M-, MX, M/, SIN ⁻¹ , COS ⁻¹ , TAN ⁻¹).
	(d) First word = branch instruction. The second word contains the branch address to be loaded into PC on branch.

5-296

5

TABLE III. MM57109 INSTRUCTION DESCRIPTION TABLE (* INDICATES 2-WORD INSTRUCTION)

CLASS	SUBCLASS	MNEMONIC*	OCTAL OP CODE	FULL NAME	DESCRIPTION
Digit Entry		0	00 01	0	Mantissa or exponent digits. On first digit (d) the following occurs: $Z \rightarrow T$
,		2	02	2	$Y \rightarrow Z$
		3	03	3	$\begin{array}{c} X \rightarrow Y \\ d \rightarrow X \end{array}$
		5	05	5	See description of number entry on page 12.
		6	06	6	
		8	10	8	
		9	11	9 Decimal Point	Digite that follow will be manticea fraction
		EE	13	Enter Exponent	Digits that follow will be exponent.
		CS	14	Change Sign	Change sign of exponent or mantissa.
	1				Xm = X mantissa Xe = X exponent
					CS causes $-Xm \rightarrow Xm$ or $-Xe \rightarrow Xe$ depending
					on whether or not an EE instruction was executed after last number entry initiation.
		PI	15	Constant π	3.1415927 \rightarrow X, stack not pushed.
		EN	41	Enter	Terminates digit entry and pushes the stack. The argument entered will be in X and Y.
				-	Z→T
			r		$ \begin{array}{c} Y \rightarrow Z \\ X \rightarrow Y \end{array} $
		NOP	77	No Operation	Do nothing instruction that will terminate digit
	N.	нагт	17	Halt	entry.
				- I are	generates HOLD = 1. Processor waits for HOLD
					= 0 before continuing. HALT acts as a NOP and
				1	since it does not terminate digit entry.
Move		ROLL	43	Roll	Roll Stack.
		POP '	56	Рор	Pop Stack.
					$ \begin{array}{c} Y \rightarrow X \\ Z \rightarrow Y \end{array} $
					$T \rightarrow Z$
		XEY	60	X exchange Y	$0 \rightarrow T$
			00	A exchange 1	$X \leftrightarrow Y$
		XEM	33	X exchange M	Exchange X with memory. $X \leftrightarrow M$
		MS	34	Memory Store	Store X in Memory. $X \rightarrow M$
ł		MR	35	Memory Recall	Recall Memory into X. Stack is pushed.
		LSH	36	Left Shift Xm	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
					point in same position. Former most significant digit is saved in link digit Least significant digit
					is zero. Former link digit is lost.
		RSH	37	Right Shift Xm	X mantissa is right shifted while leaving decimal
					normally zero except after a left shift, is shifted
					into the most significant digit. Least significant
	I.	I	I	1 .	uigit is lost.

MM57109

Functional Description (Continued)

TABLE III. MM57109 INSTRUCTION DESCRIPTION TABLE (CONTINUED) (*INDICATES 2-WORD INSTRUCTION)

MathF (X,Y)+71PlusAdd X to Y. X + Y \rightarrow X. On +, -, x, / and YX instructions, stack is popped as follows: $Z \rightarrow Y$ $T \rightarrow Z$ $O \rightarrow T$ 72Minus TimesSubtract X from Y. Y \rightarrow X \rightarrow X Multiply X times Y. Y \times X \rightarrow X Multiply X times memory. M \times X \rightarrow M Multiply X times memory. M \wedge X \rightarrow M Multiply X times memory. M \wedge X \rightarrow M Multiply X times Multiply X \wedge X \rightarrow X Multiply X (\sim X \sim X N \sim N \wedge X \rightarrow X Multip	CLASS	SUBCLASS	MNEMONIC*	OCTAL OP CODE	FULL NAME	DESCRIPTION
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Math	F (X,Y)	+	71	Plus	Add X to Y, X + Y \rightarrow X, On +, -, x, / and YX
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-		instructions, stack is popped as follows:
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						$Z \rightarrow Y$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						$T \rightarrow Z$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						$0 \rightarrow T$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				70	Minus	Former X, Y are lost. Subtract X from X $X = X \rightarrow X$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			 •	72	Times	Subtract \land from f. f = $\land \Rightarrow \land$ Multiply \land times $\curlyvee ~ \curlyvee ~ \land \Rightarrow \land$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			î	74	Divide	Divide X into Y. $Y \div X \rightarrow X$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			YX	70	Y to X	Raise Y to X power. $YX \rightarrow X$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		F (X,M)	INV +*	40, 71	Memory Plus	Add X to memory. $M + X \rightarrow M$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				4		On INV +, $-$, x and / instructions, X, Y, Z,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			18197 *	40.70		and T are unchanged. Former M is lost.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				40,72	Memory Minus	Subtract X from memory. $M - X \rightarrow M$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			INV /*	40,73	Memory Divide	Divide X into memory $M \div X \rightarrow M$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		F (X) Math	1/X	67	One Divided by X	$1 \div X \rightarrow X$. On all F (X) math instructions Y. Z.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						T and M are unchanged and previous X is lost.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			SORT	64	Square Root	$\sqrt{\mathbf{X}} \rightarrow \mathbf{X}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			SQ	63	Square	$X^2 \rightarrow X$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			10X	62	Ten to X	$10^{\wedge} \rightarrow X$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			EX	61	e to X	$e^{A} \rightarrow X$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				66	Base 10 log of X	$\log X \to X$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		F (X) Trig	SIN	44	Sine X	$SIN(X) \rightarrow X$. On all $F(X)$ trig functions, Y, Z, T,
COS TAN INV SIN*45 46 ModesCosine X Tangent X Tangent X Tangent X TAN(X) \rightarrow X TAN(X) \rightarrow X SINT $^{1}(X) \rightarrow X$ SINT $^{1}(X) \rightarrow X$ TAN $^{1}(X) \rightarrow X$ 	·					and M are unchanged and the previous X is lost.
TAN INV SIN* INV COS*46 40, 44 Inverse sine X Inverse cosine X Inverse cosine X Inverse cosine X INV TAN*Tangent X 40, 44 Inverse cosine X DTR S5Tangent X 40, 45 Inverse cosine X Degrees to radians Covert X from degrees to radians. Covert X from degrees. Clear all internal registers and memory; initialize i/0 control signals, MDC = 8, MODE = floating point. (See INITIALIZATION.) O \rightarrow Error flag DrampBranchTestJMP*25Error flag clear JumpO \rightarrow Error flag Unconditional branch to address specified by second instruc- tion word. On all branch instruc- tion word if JC (lg) is true (=1). Otherwise, skip over second word. Branch to address specified by second instruc- tion word if JC (lg) is true (=1). Otherwise, skip over second word. Branch to address specified by second instruc- tion word if arror flag is true (=1). Otherwise, skip over second word. May be used for detecting specific errors as opposed to using the automatic error recovery scheme dealt with in the section on Error Control. Branch to address specified by second instruc- tion word if X = 0. Otherwise, skip over second word.TXE*23Test X < 1			COS	45	Cosine X	$COS(X) \rightarrow X$
ClearINV SIN* INV TAN*40, 44 40, 45 Inverse cosine X Inverse cosine X Inverse to radians Convert X from degrees to radians. Convert X from degrees to radians. Convert X from degrees. Convert X from radians to degrees. Clear all internal registers and memory; initialize I/O control signals, MDC = 8, MODE = floating point. (See INITIALIZATION.) O \rightarrow Error flag Unconditional branch to address specified by second instruction word. On all branch instruc- tions, second word contains branch address to be loaded into external PC.BranchTestJMP*25Test jumpUnconditional branch to address specified by second instruction word if JC (lg) is true (=1). Otherwise, skip over second word. Branch to address specified by second instruc- tion word if areor flag is true (=1). Otherwise, skip over second word. May be used for detecting specified by second instruc- tion word if X = 0. Otherwise, skip over second word.TXF*23Test X < 1			TAN	46	Tangent X	$TAN(X) \rightarrow X$
INV CUS40, 46 40, 46 DTRInverse cosine X 40, 46 DTRCUS $^{-1}(X) \rightarrow X$ Convert X from radians to degrees. Convert X from radians to degrees. Convert X from radians to degrees. Clear all internal registers and memory; initialize I/O control signals, MDC = 8, MODE = floating point. (See INITIALIZATION.) $O \rightarrow Error flag$ Unconditional branch to address specified by second instruction, second word contains branch address to be loaded into external PC. Branch TestBranchTestJMP*25JumpUnconditional branch to address specified by second instruction word. On all branch instruc- tions, second word contains branch address to be loaded into external PC. Branch to address specified by second instruc- tion word if JC (Ig) is true (=1). Otherwise, skip over second word.TX = 0*21Test x = 0Branch to address specified by second instruc- tion word if error flag is true (=1). Otherwise, skip over second word.TXF*23Test X < 1	1.1	·	INV SIN*	40, 44	Inverse sine X	$SIN^{-1}(X) \rightarrow X$
ClearDTR DTR RTD55 54Inverse tail x Degrees to radians. Radians to degrees Master ClearTAN Tom vert X from degrees to radians. Convert X from radians to degrees. Clear all internal registers and memory; initialize I/O control signals, MDC = 8, MODE = floating point. (See INITIALIZATION.) $O \rightarrow$ Error flag Unconditional branch to address specified by second instruction word. On all branch instruc- tion, second word contains branch address to be loaded into external PC. Branch to address specified by second instruc- tion word if JC (Ig) is true (=1). Otherwise, skip over second word.TERR*24Test error flag Test error flagBranch to address specified by second instruc- tion word if JC (Ig) is true (=1). Otherwise, skip over second word.TX = 0*21Test X = 0Branch to address specified by second instruc- tion word if X = 0. Otherwise, skip over second word.TXF*23Test IXI<1		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		40,45	Inverse cosine X	$COS^{-1}(X) \rightarrow X$
ClearRTD MCLR54 MCLRGover to the form radians to degrees. Convert X from radians to degrees. Clear all internal registers and memory; initialize I/O control signals, MDC = 8, MODE = floating point. (See INITIALIZATION.) O \rightarrow Error flag Unconditional branch to address specified by second instruction word. On all branch instruc- tions, second word contains branch address to be loaded into external PC. Branch to address specified by second instruc- tions, second word. On all branch instruc- tions, second word. TERR*Convert X from radians to degrees. Clear all internal registers and memory; initialize I/O control signals, MDC = 8, MODE = floating point. (See INITIALIZATION.) O \rightarrow Error flag Unconditional branch to address specified by second instruction word. On all branch instruc- tions, second word. On all branch instruc- tion word if I/C (Ig) is true (=1). Otherwise, skip over second word.TERR*24Test pump conditionBranch to address specified by second instruc- tion word if error flag Branch to address specified by second instruc- tion word if error flag is true (=1). Otherwise, skip over second word.TX = 0*21Test X = 0Branch to address specified by second instruc- tion word if X = 0. Otherwise, skip over second word.TXLT0*22Test IXI < 1			DTR	55	Degrees to radians	Convert X from degrees to radians
ClearMCLR57Master ClearClear all internal registers and memory; initialize I/O control signals, MDC = 8, MODE = floating point. (See INITIALIZATION.) $O \rightarrow$ Error flag Unconditional branch to address specified by second instruction word. On all branch instruc- tions, second word contains branch address to be loaded into external PC.BranchTestJMP*20Test jump conditionO \rightarrow Error flag Unconditional branch to address specified by second instruction word. On all branch instruc- tions, second word contains branch address to be loaded into external PC.TJC*20Test jump conditionBranch to address specified by second instruc- tion word if JC (Ig) is true (=1). Otherwise, skip over second word.TERR*24Test error flagBranch to address specified by second instruc- tion word if error flag is true (=1). Otherwise, skip over second word.TX = 0*21Test X = 0Branch to address specified by second instruc- tion word if X = 0. Otherwise, skip over second word.TXF*23Test X < 1			RTD	54	Radians to degrees	Convert X from radians to degrees.
BranchTestECLR JMP*53 25Error flag clear JumpI/O control signals, MDC = 8, MODE = floating point. (See INITIALIZATION.) $O \rightarrow$ Error flag Unconditional branch to address specified by second instruction word. On all branch instruc- tions, second word contains branch address to be loaded into external PC. Branch to address specified by second instruc- tion word if JC (Ig) is true (=1). Otherwise, skip over second word.TERR*24Test error flagTX = 0*21Test X = 0TXF*23Test IXI < 1	Clear		MCLR	57	Master Clear	Clear all internal registers and memory; initialize
BranchTestECLR JMP*53 25Error flag clear Jumppoint. (See INITIALIZATION.) O \rightarrow Error flag Unconditional branch to address specified by second instruction word. On all branch instruc- tions, second word contains branch address to be loaded into external PC. Branch to address specified by second instruc- tion word if JC (I ₆) is true (=1). Otherwise, skip over second word.TERR*24Test error flagBranch to address specified by second instruc- tion word if error flag is true (=1). Otherwise, skip over second word.TX = 0*21Test X = 0Branch to address specified by second instruc- tion word if X = 0. Otherwise, skip over second word.TXF*23Test X < 1						I/O control signals, MDC = 8, MODE = floating
BranchTestECL H JMP*53 25Error flag clear Jump $O \rightarrow Error flagUnconditional branch to address specified bysecond instruction word. On all branch instruc-tions, second word contains branch address tobe loaded into external PC.TJC*20Test jumpconditionBranch to address specified by second instruc-tion word if JC (I6) is true (=1). Otherwise,skip over second word.TERR*24Test error flagBranch to address specified by second instruc-tion word if error flag is true (=1). Otherwise,skip over second word.TX = 0*21Test X = 0Branch to address specified by second instruc-tion word if X = 0. Otherwise, skip over secondword.TXF*23Test X < 1$						point. (See INITIALIZATION.)
BranchTestJump25JumpOncontinuous branch ito address specified by second instruction word. On all branch instruc- tions, second word contains branch address to be loaded into external PC. Branch to address specified by second instruc- tion word if JC (Ig) is true (=1). Otherwise, skip over second word.TERR*24Test error flagBranch to address specified by second instruc- tion word if error flag is true (=1). Otherwise, skip over second word. May be used for detecting specific errors as opposed to using the automatic error recovery scheme dealt with in the section on Error Control.TXF*23Test X < 1	Branch	Test		53	Error flag clear	$O \rightarrow \text{Error flag}$
TJC*20Test jump conditionBranch to address specified by second instruc- tions, second word contains branch address to be loaded into external PC. Branch to address specified by second instruc- tion word if JC (I ₆) is true (=1). Otherwise, skip over second word.TERR*24Test error flagBranch to address specified by second instruc- tion word if error flag is true (=1). Otherwise, skip over second word. May be used for detecting specific errors as opposed to using the automatic error recovery scheme dealt with in the section on Error Control.TX = 0*21Test X = 0Branch to address specified by second instruc- tion word if X = 0. Otherwise, skip over second word.TXF*23Test X < 1	Dranch	Test	JMF	25	Jump	second instruction word. On all branch instruc-
TJC*20Test jump conditionbe loaded into external PC. Branch to address specified by second instruc- tion word if JC (16) is true (=1). Otherwise, skip over second word.TERR*24Test error flagBranch to address specified by second instruc- tion word if error flag is true (=1). Otherwise, skip over second word.TX = 0*21Test X = 0Branch to address specified by second instruc- tion word if error recovery scheme dealt with in the section on Error Control.TXF*23Test IXI < 1					1	tions, second word contains branch address to
TJC*20Test jump conditionBranch to address specified by second instruc- tion word if JC (I ₆) is true (=1). Otherwise, skip over second word.TERR*24Test error flagBranch to address specified by second instruc- tion word if error flag is true (=1). Otherwise, skip over second word. May be used for detecting specific errors as opposed to using the automatic error recovery scheme dealt with in the section on Error Control.TX = 0*21Test X = 0Branch to address specified by second instruc- tion word if X = 0. Otherwise, skip over second word.TXF*23Test X < 1						be loaded into external PC.
TERR*24Conditiontion word if JC (I ₆) is true (=1). Otherwise, skip over second word. Branch to address specified by second instruc- tion word if error flag is true (= 1). Otherwise, skip over second word. May be used for detecting specific errors as opposed to using the automatic error recovery scheme dealt with in the section on Error Control. Branch to address specified by second instruc- tion word if X = 0. Otherwise, skip over second word.TX = 0*21Test X = 0Branch to address specified by second instruc- tion word if X = 0. Otherwise, skip over second word.TXF*23Test X < 1			TJC*	20	Test jump	Branch to address specified by second instruc-
TERR*24Test error flagskip over second word. Branch to address specified by second instruc- tion word if error flag is true (= 1). Otherwise, skip over second word. May be used for detecting specific errors as opposed to using the automatic error recovery scheme dealt with in the section on Error Control.TX = 0*21Test X = 0Branch to address specified by second instruc- tion word if X = 0. Otherwise, skip over second word.TXF*23Test X < 1					condition	tion word if JC (I_6) is true (=1). Otherwise,
IERR24Test error flagBranch to address specified by second instruction word if error flag is true (= 1). Otherwise, skip over second word. May be used for detecting specific errors as opposed to using the automatic error recovery scheme dealt with in the section on Error Control. $TX = 0^*$ 21Test X = 0Branch to address specified by second instruction word if X = 0. Otherwise, skip over second word. TXF^* 23Test $ X < 1$ Branch to address specified by second instruction word if $ X < 1$. Otherwise, skip over second word. $TXLT0^*$ 22Test $X < 0$ Branch to address specified by second instruction word if $X < 0$. Otherwise, skip over second word.		-	TEDD *			skip over second word.
TX = 0*21Test X = 0Test X = 0TXF*23Test $ X < 1$ Branch to address specified by second instruction word if $ X < 1$. Otherwise, skip over second word.TXLT0*22Test X < 0			IERR"	24	lest error flag	Branch to address specified by second instruc-
$TX = 0^*$ 21Test $X = 0$ $automatic error as opposed to using theautomatic error recovery scheme dealt with inthe section on Error Control.Branch to address specified by second instruc-tion word if X = 0. Otherwise, skip over secondword.TXF^*23Test X < 1Branch to address specified by second instruc-tion word if . X < 1. Otherwise, skip oversecond word.TXLT0^*22Test X < 0Branch to address specified by second instruc-tion word if . X < 1. Otherwise, skip oversecond word.$						skip over second word May be used for
$TX = 0^*$ 21Test $X = 0$ automatic error recovery scheme dealt with in the section on Error Control. Branch to address specified by second instruc- tion word if $X = 0$. Otherwise, skip over second word. TXF^* 23Test $ X < 1$ Branch to address specified by second instruc- tion word if $. X < 1$. Otherwise, skip over second word. (i.e. branch if X is a fraction.) Branch to address specified by second instruc- tion word if $X < 0$. Otherwise, skip over second word.						detecting specific errors as opposed to using the
$TX = 0^*$ 21Test $X = 0$ the section on Error Control. Branch to address specified by second instruc- tion word if $X = 0$. Otherwise, skip over second word. TXF^* 23Test $ X < 1$ Branch to address specified by second instruc- tion word if $. X < 1$. Otherwise, skip over second word. (i.e. branch if X is a fraction.) Branch to address specified by second instruc- tion word if $. X < 1$. Otherwise, skip over second word. (i.e. branch if X is a fraction.) Branch to address specified by second instruc- tion word if $X < 0$. Otherwise, skip over second word.						automatic error recovery scheme dealt with in
$TX = 0^*$ 21 Test $X = 0$ Branch to address specified by second instruction word if $X = 0$. Otherwise, skip over second word. TXF^* 23 Test $ X < 1$ Branch to address specified by second instruction word if $ X < 1$. Otherwise, skip over second word. $TXLT0^*$ 22 Test $X < 0$ Branch to address specified by second instruction word if $ X < 1$. Otherwise, skip over second word.						the section on Error Control.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			TX = 0*	21	Test X = 0	Branch to address specified by second instruc-
$ \begin{array}{ c c c c c c } TXF^{*} & 23 & Test X < 1 & Branch to address specified by second instruction word if X < 1. Otherwise, skip over second word. (i.e. branch if X is a fraction.) \\ TXLT0^{*} & 22 & Test X < 0 & Branch to address specified by second instruction word if X < 0. Otherwise, skip over second word. \\ \end{array} $			· · ·	- -		tion word if X = 0. Otherwise, skip over second
TXLT0*23Test $X < 0$ Branch to address specified by second instruction word if $ X < 1$. Otherwise, skip over second word. (i.e. branch if X is a fraction.)TXLT0*22Test $X < 0$ Branch to address specified by second instruction word if $X < 0$. Otherwise, skip over second word.			TYF*	22	Tost X = 1	Word. Branch to address specified by second instance
TXLT0*22Test X < 0Test X < 0Branch to address specified by second instruction word if X < 0. Otherwise, skip over second word.		1 I.		23	I COLINI / I	tion word if $ X < 1$ Otherwise skip over
TXLT0* 22 Test X < 0 Branch to address specified by second instruction word if X < 0. Otherwise, skip over second word.						second word. (i.e. branch if X is a fraction.)
tion word if X < 0. Otherwise, skip over second word.			TXLT0*	22	Test X < 0	Branch to address specified by second instruc-
word.						tion word if $X < 0$. Otherwise, skip over second
		L	L		1	word.

TABLE III. MM57109 INSTRUCTION DESCRIPTION TABLE (CONTINUED) (* INDICATES 2-WORD INSTRUCTION)

MM57109

5

CLASS	SUBCLASS	MNEMONIC*	OCTAL OP CODE	FULL NAME	DESCRIPTION
Branch	Count	IBNZ	31	Increment memory and branch if	$M + 1 \rightarrow M$. If $M = 0$, skip second instruction word. Otherwise, branch to address specified
		DBNZ	32	M ≠ 0 Decrement memory and	by second instruction word. $M - 1 \rightarrow M$. If $M = 0$, skip second instruction word. Otherwise, branch to address specified
I/O	Multi-digit	IN*	27	branch if M ≠ 0 Multidigit input to X	by second instruction word. The processor supplies a 4-bit digit address (DA4-DA1) accompanied by a digit address strobe (DAS) for each digit to be input. The bigh order address for the number to be input
					would typically come from the second instruc- tion word. The digit is input on D4–D1, using USEL = 0 to select digit data instead of in-
					structions. The number of digits to be input depends on the calculation mode (scientific notation or floating point) and the mantissa digit count (See DATA FORMATS and IN-
			· · ·		STRUCTION TIMING). Data to be input is stored in X and the stack is pushed $(X \rightarrow Y \rightarrow Z \rightarrow T)$. At the conclusion of the input, DA4–DA1 = 0.
		OUT*	26	Multidigit output from X	Addressing and number of digits is identical to IN instruction. Each time a new digit address is supplied, the processor places the digit to be output on D04–D01 and pulses the R/\overline{W} line active low. At the conclusion of output, D04– D01 = 0 and DA4–DA1 = 0
1/0	Single-digit	AIN	16	Asynchronous Input	A single digit is read into the processor on D4– D1. ISEL = 0 is used by external hardware to select the digit instead of instruction. It will not read the digit until $\overrightarrow{ADR} = 0$ (ISEL = 0 selects \overrightarrow{ADR} instead of 15), indicating data valid. F2 is
1/0	Flags	SF1 PF1	47 50	Set Flag 1 Pulse Flag 1	Pulsed active low to acknowledge data just read. Set F1 high, i.e. F1 = 1. F1 is pulsed active high. If F1 is already high,
		SF2 PF2	51 52	Set Flag 2 Pulse Flag 2	this results in it being set low. Set F2 high, i.e. F2 = 1. F2 is pulsed active high. If F2 is already high,
		PRW1	75	Pulse R/W 1	this results in it being set low. Generates R/W active low pulse which may be used as a strobe or to clock extra instruction
		PRW2	76	Pulse R/W 2	bits into a flip-flop or register. Identical to PRW1 instruction. Advantage may be taken of the fact that the last 2 bits of the PRW1 op code are 01 and the last 2 bits of the
Mode Control		ТОСМ	42	Toggle Mode	PRW2 op code are 10. Either of these bits can be clocked into a flip-flop using the R/W pulse. Change mode from floating point to scientific notation or vice-versa, depending on present
					mode. The mode affects only the IN and OUT instructions. Internal calculations are always in 8-digit scientific notation
		SMDC*	30	Set Mantissa Digit Count	Mantissa digit count is set to the contents of the second instruction word (=1 to 8).
		INV*	40	Inverse Mode	Set inverse mode for trig or memory function instruction that will immediately follow. Inverse mode is for next instruction only.

5-299

Functional Description (Continued) TABLE IV. MM57109 INSTRUCTION SUMMARY TABLE (* INDICATES 2-WORD INSTRUCTION)

14-14	I ₆ I5							
14-11	00 01		10	11				
0000	0	тјс*	INV*	XEY				
0001	1	TX=0*	EN	EX				
0010	2	TXLT0*	TOGM	10X				
0011	: 3	TXF*	ROLL	SQ				
0100	4	TERR*	SIN (SIN-1*)	SQRT				
0101	5	JMP*	cos (cos-1*)	LN				
0110	6	OUT*	TAN (TAN ^{-1*})	LOG				
0111	7.	IN*	SF1	1/X ***				
1000	8	SMDC*	PF1	YX				
1001	9 -	IBNZ*	SF2	+ (M+*)				
1010	DP	DBNZ*	PF2	– (M–*)				
· 1011	EE .	XEM	ECLR	x (MX*)				
1100	· CS	MS ·	RTD	/ (M/*)				
1101	PI	MR	DTR	PRW1				
1110	AIN	LSH	POP	PRW2				
1111	HALT	RSH	MCLR	NOP				

Note 1: HALT is same as NOP except it does not terminate number entry. External hardware must generate HOLD = 1 to halt.

Note 2: ISEL = 0 for AIN, all 2-word instructions except SMDC.

Note 3: All instructions with $I_6 I_5 = 00$, do not terminate number entry. Other instructions do terminate number entry.

	INSTRUCTION MNEMONIC	EXECUTION TIME (MICROCYCLES) (AVERAGE)	EXECUTION TIME (MICROCYCLES) (WORST-CASE VALUES)	INSTRUCTION MNEMONIC	EXECUTION TIME (MICROCYCLES) (AVERAGE)	EXECUTION TIME (MICROCYCLES) (WORST-CASE VALUES)
	0-9		238	OUT		583
	DP		152	IN		395
	EE		151	SF1		163
	CS		166	PF1		185
	PI	<i>,</i>	1312	SF2		163
	HALT		134	PF2		185
	AIN		284	PRW1		130
	TJC		208	PRW2		130
1	TX=0		278	SIN	56200	95900
	TXLT0	10 A. 19	197	COS	56200	95900
	TXF	н С С	277	TAN	35000	97600
	TERR	1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	191	INV SIN	54000	93900
	JMP.		. 186	INV COS	54000	93900
	IBNZ		2314	INV TAN	30200	92900
	DBNZ	10 - 10 March 10	2314	LN	24800	92000
	SMDC	la de la companya de	163	LOG	30700	92600
	XEM :	and the second	812	EX	30800	93900
	MS	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	839	10X	27400	96500
	MR		1385	°+, —	2200	6600
	LSH		168	INV+, IŃV-	1700	5000
	RSH .		173	(M+, M–)		
	INV	• • · · · · · · · · · · · · · · · · · ·	166	×	3200	22700
	EN .	-	552	INV x (MX)	2700	21400
	TOGM		157	/	7800	22300
	ROLL		905	INV / (M/)	7300	21100
	ECLR		163	1/X	4500	22800
	POP		448	YX ·	55400	95500
	MCLR		734	SORT	7000	30200
	XEY		652	SQ	3000.	21900
	NOP	at a second	122	DTR, RTD	9600	41700

TABLE V. INSTRUCTION EXECUTION TIMES

Note 1: All times are measured from leading edge of ready for first word of the instruction to leading edge of ready for first word of the next instruction. (Hold = 0).

Note 2: Add 67 microcycles to the execution time of any instruction which initiates number entry and is preceded by an ENTER instruction. Note 3: Add 282 microcycles to the execution time of any instruction which initiates number entry and is not preceded by an ENTER instruction.

Note 4: Add 1003 microcycles to the execution time of any instruction which terminates number entry.

Note 5: The execution time of each instruction is a function of the internal state of the device and is not necessarily related to the number of digits in the operand. It is not possible to predict precisely what the execution time will be for any given instruction. This table shows worst-case values for basic instructions, and both average and worst-case values for mathematical instructions.

FIGURE 10. Instruction Timing Diagrams

, F	OUTPUT) .											
	SEL (OUTPUT)		°	** : * *			•		· ·	· .		
ана 1911 г. – Ар	6-11 (INPUTS)	<u> </u>										
DA4-D	 A1 (OUTPUTS)	A		·			-v			ý	-	
				· · · · · · · · · · · · · · · · · · ·	 	 	-^			 		
POINTS	JAS (001P01)		e in the second	Ш	LI ···			Ц.	Ц	LI '	, LL	
POINTS	101 (martines					DESCR						
B	ISEL goes	low for sec	cond instruct	ion word. I	Data digits	multiplexed	d onto I lir	nes when IS	EL = 0. I	lines are c	don't care	until DA
С	occurs. Second w	ord of instru	uction becom	es available	e to externa	al hardware	as a high-	order addre	ss for a F	AM or oth	ner device	·
D	First digit	address ap	pears on DA	lines. This	digit addre	ss is 0 or 2	depending	on whethe	r mode is	scientific	notation	or floatin
	going edge	e of DAS th	e old digit ad	dress is val	id while at	microcycle the positive	active low e going edg	ge of DAS t	he new d	es this chai igit addres	nge so tha s is valid.	at at the r
E .	Digit data	becomes v	alid on D4-I	D1 within	1/2 microc	ycle after i	DAS negat	tive edge. D	igit data	must rema	ain valid f	for 1 micr
F	Digit addr	ess advance	s to next digi	t, i.e., 0, 1,	2, 3,, I	N scientific	notation o	or 2, 3, 4, .	, N floa	ting point		
	where	N = MDC +	3 scientific n	otation								
evrement evenement evenem		•	1.5									
G	Next digit	umm										
а	Number o	f digits read	depends on	notation m	ode and m	antissa digi	t count (se	e DATA F	ORMATS	6).	Juise for	nextinst
				(g) Ti	ming Cha	racteristic	s for IN I	Instructio	n			
												are until DAS pul- ice. or next instructio or next instructio ice. ruction. 3 microcycles afte . Number of digi N placed on 1 line: Instructions
. Ri	JY (OUTPUT)		į							<u> </u>		are until DAS purice. on or floating por that at the negation of the second sec
IS	NI-DAI (BUTFUTS) 0											
RDY (OUTP ISEL (OUTP I ₆ -1 ₁ (INPL DA4-DA1 (OUTPL												
		A										t care until DAS puls device. ation or floating poin so that at the negative valid. valid for 1 microcycle e for next instruction
DA4-DA	1 (OUTPUTS)					X	_X		_X	X	<u> </u>	
. 0	AS (OUTPUT)			<u>_</u>	Ů		പ്—		_Ů	<u> </u>		
004-00												
	_			E	<u>_</u>			- A	- <u>A</u>	н		
R	/Ŵ (OUTPUT)			Ļ	1 U	L 1	U	i ju	· L			
 A IN instruction is placed on 1 lines. B ISEL goes low for second instruction word. Data digits multiplexed onto 1 lines whe occurs. C Second word of instruction becomes available to external hardware as a high-order a D First digit address appears on DA lines. This digit address is 0 or 2 depending on wh respectively. Each time a new digit address appears, a 1 microcycle after DAS negative edg During this time data is read. F Digit data becomes valid on D4–D1 within 1/2 microcycle after DAS negative edg During this time data is read. F Digit address advances to next digit, i.e., 0, 1, 2, 3,, N scientific notation or 2, 3, where N = MDC + 1 floating point (See DATA FORMATS). G Next digit is placed on D4–D1, again within 1/2 microcycle after DAS negative edge H All digits have been read in. Digit Address goes to 0000, DAS pulse occurs. ISEL (All worthors) G Next digit is placed on D4–D1, again within 1/2 microcycle after DAS negative edge (g) Timing Characteristics for IN Instruction to digits read depends on notation mode and mantissa digit count (see DAT (Sen MATS)). C (g) Timing Characteristics for IN Instruction splaced on 1 lines. B ISEL goes low for second instruction word. C Second word of instruction becomes available to external hardware as a high-order a D First digit address appears on DA lines, the same as for the IN instruction DAS fram E First digit address appears on DA Inter, the same as for the IN instruction DAS fram E First digit address appears on DA Inter, Second word of instruction becomes available to external hardware as a high-order an D First digit address appears on DA Inter, the same as for the IN instruction DAS fram E First digit address appears on DA Inter, the same as for the IN instruction DAS fram E First digit address appears on DA Inter, Second word of Instruction becomes available to external hardware as a high-order an D First digit adupter ap												
POINTS DESCRIPTION A OUT instruction is placed on I lines. B ISEL goes low for second instruction word. C Second word of instruction becomes available to external hardware as a high ord D E Second word of DAS			• •									
A	OUT instr	uction is pla	aced on I line	S.					1.1			
В	ISEL goes	low for sec	ond instruction	on word.				· · · · · ·				
C D	First digit	address app	ears on DA li	es available ines, the sa	e to externa me as for t	il hardware he IN instru	as a high o	S frames D	ss for a H A change	AM or othes, as with	IN instru	ction.
E	First digit	output app	ears on DO4-	-DO1 with	in 2 microo	ycles after	the negati	ve edge of	DAS.			
	the negative	e low pulse ve edge of D	OCCURS to WRI	te data inte	S RAM or o	other device	e. This is a	2-microcyc	te pulse o	occurring v	within 3 n	nicrocycli
G	Digit addr	ess advances	s to next digit	t. (See DA	TA FORM	ATS).						
н.	All digits	have been o	ears on DO4- output. Digit	Address a	microcycle: oes to 000	o. ISEL go	ast digit al es high be	ppeared. fore RDY	pulse for	next instr	uction. N	lumber o
e dia series	read deper	nds on notat	tion mode and	d mantissa	digit count	(see DATA	FORMA	TS).				
				(h) Tim	ing Chara	cteristics	for OUT	Instructio	n			
DRI-DDI (0017013) 0												
respectively. Each time a new digit address appears, all microcycle active low pulse on DAS frames this changes on that at going edge of DAS the old digit address is valid. Digit dates becomes valid on D4–D1 within 1/2 microcycle after DAS negative edge. Digit data must remain valid for 1 Digit address advances to next digit, i.e., 0, 1, 2, 3,, N scientific notation or 2, 3, 4,, N floating point where N = MDC + 3 teinific notation N = MDC + 3 teinific notation (g) Timing Characteristics for IN Instruction N = MC = MDC + 3 teinific notation N = MC = MDC + 3 teinific notation mode and matrixs N = MC = MDC + 3 teinific notation mode and matrixs N = MC = MDC + 3 teinific notation mode and matrixs N = MC = MDC + 3 teinific notation mode and matrixs N = MDC + 3 teinific notation mode and matrixs N		L										
Functional Description (Continued) ast darmany bit darmany cit darmany <td></td>												
Functional Description (Continued) Arr restrict Sector Processing Sector Pr												
D MI (OUTPUT)	a ate		Stion (Continued)									
R/W (OUTPUT)			ion (Continued) • • • • • • • • • • • • • • •									
Functional Description (Continued) A revenue of the second process of the second proces of the second process of the second proces. T	ced on I											
Functional Description (Continued) #**(estrem		an is uld										
R₩ (OUTPUT) POINTS A B	PR 2-r	W1 or PRV	V2 instruction R/W active lo	n is placed w pulse oc	on I lines curs.		B	- F1 c	r F2 is se	t high.		

FIGURE 10. Instruction Timing Diagrams (Continued)

DATA FORMATS

IN/OUT Instructions

Mantissa digit count and notation mode determine data format. Table VII shows the contents of the D, D0 and DA lines for an IN or OUT instruction. Anywhere from 4 to 11 digits will be input or output by a single instruction.

AIN Instruction

One digit is input per AIN instruction. A maximum of 8 digits may be entered into the X mantissa by using consecutive AIN instructions. Digit entry is terminated by EN or any function instruction, (see NUMBER ENTRY). Table VII shows the DA lines for consecutive AIN instructions.

ERROR CONTROL

The error flag, which can drive an LED indicator, is set high upon detection of an arithmetic or output error. (See Table VI).

The error flag can be tested by the TERR instruction (which branches if ERROR = 1) or it can be used to clear the external program counter, resulting in a hardware jump to location 0, the error recovery location. In either case, an ECLR instruction must be executed to clear the error flag.

The occurrence of an error does not affect the operation of the processor in any way. The OUT instruction will not output digits if error condition 8 is true, but otherwise will output digits, even if the error flag is set. For automatic error recovery, ERROR is wired to the asynchronous clear input of the external program counter (PC). The instruction at location 0 is an ECLR to clear ERROR so that the next RDY pulse will advance the PC to location 1. A JMP instruction at location 1 with the branch address at location 2 of an error routine is then executed, which results in a transfer of program control to the error routine. These first 3 error recovery locations are skipped over upon reset (POR) as can be seen in the initialization and instruction fetch flowcharts. The program shown in Table VIII shows typical error recovery coding.

SAMPLE SYSTEMS

Figures 11-14 show sample systems using the MM57109. Figure 11 shows a simple demonstrator system using switches to enter instructions. An LED display is used to demonstrate the OUT instruction, with a switch to force an OUT instruction on the I lines and to hold the HOLD input low for 1 second for repeated execution of the OUT instruction, resulting in a multiplexed display. A flip-flop latches the BR pulse which occurs when a test and branch instruction is true. LED lamps provide visual indication of the various flags. An enter button allows single instruction words to be entered one at a time in the ENTER mode and causes the display to light for 1 second in the DISPLAY mode.

Figure 12 shows a stand-alone system with external program counter and a RAM to expand memory.

Figure 13 shows the MM57109 used as a microprocessor peripheral. Latches contain instructions for the MM57109 and digit data for the microprocessor.

Figure 14 shows a data acquisition system which obtains data from a 3-digit A/D converter. Figure 14(b) shows a program which reads data from the A/D converter. This coding should be studied as a general example of an MM57109 program.

Figure 15 shows a microprocessor to MM57109 interface using 2 FIFO's for instruction and data buffering.

These sample systems are not intended to be detailed drawings of a complete system (except *Figure 11*). Their purpose is to provide the designer with some ideas as to how to use the MM57109 in an actual system.

MM57109

TABLE VII. DATA FORMATS

IN/OUT INSTRUCTIONS (A) MODE = SCIENTIFIC NOTATION

DA4-DA1	IN: OUT:	D4 DO4	D3 D03	D2 D02	D1 • D01	* . 		
0		Most sign	ificant expone	nt digit	•			
1		Least significant exponent digit						
2		Sm	0	0	Se			
3		Not used		1. A.				
4		Most significant mantissa digit (Decimal point follows this digit)						
		This digit <i>must</i> be non-zero on the AIN instruction unless the entire number is zero. Failure to do this will result in errors in calculations. This digit will <i>always</i> be non-zero on the OUT						
		instructio	n, for non zero	numbers.				
5		Second m	ost significant	mantissa digit,				
		•						
MDC + 3		Least significant mantissa digit						

IN/OUT INSTRUCTIONS (B) MODE = FLOATING POINT

DA4DA1	DPX	IN: OUT:	D4 DO4	D3 DO3	D2 DO2	D1 D01	
2 3 4			Sm DP POS Most signi	0 ficant mantiss	0 a digit = 0—9. 0	0 In the OUT	
			instruction, this digit will be non-zero unless $ X < 1$, in which case it will be zero and DP POS will be 11. Leading zeroes are not blanked.				
5	10		Second me	ost significant	mantissa digit		
· ·	•		•		•		
	• •		•		+ 1		
MDC + 3	12 – MDC		Least signi	ficant mantiss	a digit = 0—9	:	

Notes: MDC

= Mantissa digit count, set by SMDC instruction, initially = 8

= Sign of mantissa, 0 = positive, 1 = negative

Sm Se DP POS

= Sign of exponent (Se = 0 in floating point mode)

Decimal point position indicator is a value in the range from 11 down to 12 - MDC, which indicates a digit, as given by the DPX column in the table. The decimal point is located immediately following this digit. Example: If DP POS = 10, then the decimal point follows the second most significant mantissa digit (DPX = 10).

AIN INSTRUCTION

DA4-DA1	
· 0	Most significant digit Xm (first AIN instruction)
•	· · ·
7	Least significant digit Xm (eighth AIN instruction)

Note. $X_m = X$ register mantissa. Decimal point follows last digit entered. An irrecoverable internal error will occur if more than 8 digits are entered in a row with AIN, or if a non-BCD digit is entered.

OCTAL ADDRESS	OCTAL OP CODE	LABEL	INSTRUCTION MNEMONIC	OPERAND	COMMENT
00 01 02 03	53 25 75		ECLR JMP User Program	ERROR	Clear error flag Jump to error routine Address of label 'ERROR'
•			••••••••••••••••••••••••••••••••••••••		
75		ERROR		-	User error recovery routine

TABLE VIII. ERROR RECOVERY CODING

5

FIGURE 13(b). Microcomputer Software for MM57109 Peripheral Interface

.

FIGURE 13(c). Microcomputer Software for MM57109 OUT, Test Instructions

FIGURE 14(a). MM57109 Analog Data Acquisition System Block Diagram

Acquisition System Instruction Format

Acquisition System Coding

INSTRUCTION	P7	Р6	P5P4P3P2P1P0		P7	P6	P5-P0	COMMENT
					1	1	4	Number of channels to be input
Select Analog Channel	1	1	OUT instruction		1	1	MS	Store in M
A/D Input	0	1	AIN instruction		. 1	1	SMDC	Mantissa Digit Count = 1
RAM I/O Others	1	0	IN/OUT instructions for second word. Second	LOOP	1	1	1	
					1	1	MR	Retrieve channel number
	word P0-P3 are high					-1	OUT	Select analog channel
			order RAM addresses Other instructions		1	1	.0	
	1	1			1	1	PF1	Start A/D converter
					1	1	EN	Push stack
					0	1	AIN	Read A/D converter digit 1 when EOC = 0
					0	.1	AIN	Read A/D converter digit 2
					0	1	AIN	Read A/D converter digit 3
					1	1	DBNZ	Update channel number and check if 0
					1	1	LOOP	
					1	1	х	Channel 1 times channel 2 (C1 x C2)
					1	1	1	(C1 x C2) ÷ C3
					1	1	COS	COSINE ((C1 x C2) ÷C3)
					1	1	+	C4 + COSINE ((C1 × C2) ÷ C3)
					1	1	SMDC	Mantissa Digit Count = 3
					1	1	3	
					1	0	OUT	Result to RAM (0)
					1	0	0	

FIGURE 14(b). MM57109 Analog Data Acquisition System Input Coding

5

FIGURE 15. MM57109 Microcomputer Interface Using 2 FIFO's

Getting Your MM57109 Going

After wiring up a system using an MM57109, the following steps should be followed to verify that the processor is operating properly:

- 1. Check power supply for proper level, polarity, and absence of noise.
- 2. Check oscillator frequency, levels, duty cycle and rise and fall times.
- 3. Verify presence of SYNC output.
- 4. Check POR reset pulse duration, levels and rise and fall times.
- 5. Put HOLD input high and verify that RDY stays high.
- 6. Put HOLD input low and verify that RDY is pulsing active high.
- 7. Check that the system places the proper instructions on the I lines.
- 8. Force an OUT instruction on the I lines, put HOLD low, apply a reset pulse, and verify that DO4, DO2, DO1 DA-DA1, DAS and R/W are changing.