Ipso Facto

ISSUE 28
MARCH 1982
A PUBLICATION OF THE ASSOCIATION OF THE COMPUTER-CHIP EXPERIMENTERS (ACE) 1981
Executive Corner 2
Editor's Corner 3
New Product Announcements 3
Members Corner 5
Errata 6
From Tony Hill's Notebook 7
An EPROM Programmer for single $+5 v$ Supply EPROMS 10
MODS to Netronics Full Basic Part II 13
64k Dynamic Board 14
Tiny Pilot Terminal Tester 16
Kaleidoscope and Life Programs 18
Telephone Dialling Program 20
New Mnemonics for the Netronics Assembler 23
Full Basic Number Crunch Sans Basic 26
Selectric Typewriter Tools 30
Another Tape Controller 33
An Interface for the Epson MX-80 Printer 34
Quest Dynamic Board Fix 35
OHM's Law 36
1802 Quickies 37
Hex Keyboard for the ELF (PART II) 38
Monitor Survey 40
-by Tony Setaro, 145 Shunpike Rd., Cromwell, Connecticut, USA, 06416
The purpose of this article is to present information to assist in the independant use of the 57109 Number Oriented Processor that is an integral part of the NETRONICS FULL BASIC package.

Background
Like many others, I find FULL BASIC to be extremely limited except for its excellent math capability made possible by the 57109. It naturally follows that the use of the 57109 , independant of BASIC should be helpful.

The following narrative, subroutines and examples should assist anyone to make use of this tool in their programming. It is assumed that anyone interested in this subject has the National Semiconductor Data Sheet on the 57109 that was included in the NETRONICS' package. Except for the interfacing, the Data Sheet contains all information needed to use the 57109.

INPUT
All numbers and commands are entered from memory to the math processor (MP) via an OUTPUT 5 (65) instruction. Do this by setting $R X$ to the address of the byte to be input and issue the 65 instruction or set X to the PC and issue a 65 instruction immediately followed by the byte to be input.

The MP requires all numbers and commands to be 2 digits. Each of the 2 digits is in octal notation and only contains 3 bits. However, these 2 octal digits are moved from memory into the MP as a single hexadecimal byte where the 2 high order (leftmost) bits are insignificant. eg., to input the number 1 into the MP,"Ol"octal must be fed in as 6 bits- 000 001. This must represented in memory as hex " 01 " or 00000001. Straight forward so far, but to input the command "Master Clear", 57 octal must be fed in as- 101 111. This is represented as 00101111 or 2 F .

Exhibit A is a list of all numbers and commands in hex.
The MP must be synchronized with the 1802 by a delay between each input byte. This delay is accomplished by issuing INPUT 2 instructions until the proper response is received. See the subroutine "I/P Delay".

OUTPUT

Results can be obtained from the MP and put into memory by issuing 2 OUT instructions (16). The first of these instructions is followed by an input delay and the second is followed by an output delay. The output delay is a loop that continues until EF2 $=1$. When EF2=1, the MP is ready to output results which can be put into memory by issuing an INPUT 2(6A) instruction either 10 or 12 times depending on whether the MP is in Floating Point (FP) or Scientific Notation (SN) mode respectively. Each 6A instruction must be followed by an output delay.

Each 6A instruction places a byte in memory. The high order nibble of each byte is a 9 which is meaningless and can be eliminated. If the MP is in FP mode, the first output byte identifies the sign $(90=+, 98=-)$ and the second byte identifies the position of of the decimal point in the mantissa. This requires manipulation as a $9 B$ indicates the decimal should be placed immediately after the most significant mantissa digit and decrements until 94 indicates the decimal is after the least significant digit. The 8 mantissa digits follow from most to least significant.
If the MP is in SN mode, the first output byte is the most significant exponent digit and the second byte is the least significant exponent digit. The third output byte contains the sign of both the exponent and the mantissa (the 8 and the 0 bits). The fourth byte is the decimal point location which is always 98 and is not needed. The 8 mantissa digits follow.

To illustrate the above, two subroutines are included in exhibits B and C. Both routines utilize a standard call and return technique (SCRT) that always resets X to 2 on a D4 or D5.

The input subroutine is called by $D 4 X X 00$ and is followed by a string of numbers or commands in hex notation as shown in exhibit A. The string is terminated by an FE . If an FF byte is encountered in the string, the next two bytes must contain an address where from 1 to 8 numerical bytes are stored followed by either a plus sign (2B) or a minus sign (2D). The string continues after the 2 byte address until an FE or another FF is encountered.

The output subroutine is called by D4 XX3B and is followed by three bytes. The first identifies the number of decimal places that are wanted in the final result (from 00 to 08) and the next two are the address of the final 9 byte answer (8 digits plus a sign). This output routine is used for floating point only and assumes that the MP has not been toggled into $S N$ mode.

The output subroutine first dumps 10 bytes into memory at XXF0-XXF9 while changing the high order nibbles from 9 to 3. Eight bytes of memory at the designated location are zeroed and the sign is stored. The number of decimal places wanted in the final answer is calculated and the result in ASCII is moved to the final location.

SCIENTIFIC NOTATION

It is important to realize that all processing takes place internally in scientific notation mode. The TOGGLE command (22) changes mode from FP to SN and vice-versa. The MCLR command (2 F) , in addition to resetting all MP registers, places the MP in in $F P$ mode. $E E$ ($O B$) may be issued with the $M P$ in either mode and does not TOGGLE.

The TOGGLE command only affects the size and format of the results from the MP.
The full results of the MP when in SN are 12 bytes, not 10 as in the attached subroutines.

EXAMPLES

Assuming that you entered the code from exhibit B and C into page $X X$ of memory, enter following into some other page:

00	D4XX00	Call Input
03	2F	Master Clear
04	$\begin{array}{llll}01 & 02 & 03 & 39\end{array}$	123+
08	02023 B	22X
OB	FE	Terminate Instruction
OC	D4XX3B	Call Output
OF	00	No decimal consideration
10	YYYY	Address of final answer
12	3012	

Execute and YYYY should equal $\begin{array}{lllllllllllllllllllll}30 & 30 & 30 & 30 & 32 & 37 & 30 & 36 & 2 B\end{array}$
or $123+22 X=2706+$
Now enter

00	D4XX002F	Call Input and MCLR
04	FFYYYY	Enter numbers at YYYY until a 2 B or 2D
07	2134	Enter and
09	$01020 A 020539$	$12.25+$
$0 F$	$F E$	Terminate instruction
10	D4XX3B	Call Output
13	02	Allow 2 decimal places in final answer
14	$Y Y Y Y$	Address of final answer
16	3016	

3016
Execute and YYYY should equal 30303030363432362B or

EXHIBIT A

SUBROUTINE : INPUT TO MATH PROCESSOR CALL: D4 XXOO ssssss...FE Terminates FF followed by 2 byte addres

00 E6
01 06FBFE321A
06 FBO13210
0A 65D4xxlc
OE 3000
10 1646BA46AA
15 D4XX22
183000
1A 16D5
1C 6A7E7E
$1 F$ 3BlC
21 D5
22 EAOA
$24 \quad$ FB2B3221
28 FB063293
2C OAFAOF5A
30 65D4xxlc
343022
360000000000

Start SEX 6 Set X to Link
Test for FE- Yes, RETURN
Test for FE - Yes address follows
Input String- Call IP Delay
Branch to Start
Addr Input from memory- load RA from link
Call Inpmem
Branch to Start
Ret Main Return
IP Delay Input Delay Subroutine

Inpmem Input memory subroutine
If + Return
If - Change sign then Return
Zero high nibble
Input byte from memory- Call IP Delay
No meaning

F80AAC
93BDF8FOAD
46AB46BA46AA
E36516D4XX1C
E36516
3D52
ED6A
FOFAOFF9305D
1D2C
8C3A52
F808AD
F8305A
2D1A8D3A64
FBFOAD
FOFB30328F
F82D5A2A
1DF83C
F7AC
8 BE 252
8CF4AC
FCFIAD
EAOD73
2C2D
8C3A87
D5
F82B
3076
E3650C
D4xx1C
D5

RC= No. of characters from MP
$\mathrm{RD}=$ Address of scratch work area
Link load RB. 0 and RA
Issue OUT command- Call IP Delay
Issue second OUT command
OP Delay Output delay - Loop until OP ready
OP ready- put byte in memory

- There is time for this processing
- before going to
- OP Delay

All MP results are npw in work area
Zero area before storing final answer
Point RX to sign
is it +?
Sign Store - sign
Point RX to decimal point
Calc no. in integer
Calc total no. in answer-
store in RC. 0
Move answer from work area to final location

Main Return
Store + sign
Change sign- from Input subroutine
Call IP Delay
Return

EXTHIT C

RCA/Solid State Division Poute 202 Somerville, N.J. 0eb 76 (201) 0e5-6423

Three new CMOS video interface IC's from RCA emehance video and graphics display capabilities of the CDP 1800 microprocessor. The Video Interface System Chip Set features black-andwhite, gray scale and color graphics and motion on a 40×24 character display. The chip set also features programmable line and dot colors and offers a variety of formats for video/graphics display and modification under software control, with either NTSC or PAL compatible output signals. The chip set has hardware-scroll capability and provides a sound output of white noise and eight octaves of programmable tones, variable in 16 steps from 0 to 0.78 VDD.

For further information on the VIS Chip Set, including data File No. 1197 and application note ICAN-7032, write to RCA Solid State Division, Box 3200, Somerville, NJ 08876, or call Memory/Microprocessor Marketing at (201) 6856206.

