
The SAM 76
by Ancelme Roichel 
copyright 1977
Pennington New Jersey, U.S.A. 
All Rights Reserved

Language
Itiis text was formatted from a raw text file 
employing procedures which make use of the

<ncra> 21
SAM76 language processor

Typographical and code assignment table
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

0 00 0 e P • P 0 @ P - P
1 01 i 1 A Q a q i 1 A 0 a q
2 02 " 2 B R b r " 2 B R b r
3 03 # 3 C S c s # 3 C S c s
4 04 $ 4 D T d t $ 4 D T d t
5 05 % 5 E U e u % 5 E U e u
6 06 & 6 F V f v & 6 F V f v
7 07 1 7 G W q w 1 7 G W g w
8 10 ( 8 H X h X ( 8 H X h X
9 11 ) 9 I Y i y ) 9 I Y i y
A 12 * : J Z j z * : J Z j z
B 13 + ; K [ k { + 1 K [ k {
C 14 , < L \ 1 1 / < L \ 1 1
D 15 - = M ] m } - = M ] m }
E 16 . > N n ~ . > N n ~
F 17 / ? 0 0 / 0 o

The SAM 76 Language
Tl 
11 
II

The SAM76 language combines into a single interpretive 
processor characteristics of two different string and 
general purpose macro generators and one (or more) infix 
operator mathematical systems.
SAM76 was primarily inspired by the "M6 MACRO PROCESSOR" 
designed by M. D. He Ilroy and R. Morris of the Bell 
Telephone Laboratories. A description authored by Andrew D. 
Hall is given in the Bell Lab. Computing Science Technical 
Report #2, and other places.

Ttie second source of inspiration came from the syntax of 
"GPM - a GENERAL PURPOSE MACRO GENERATOR" described by its 
author - C. Strachey.

GPM syntax very significantly improves the interface 
between the user and the language by eliminating an 
awkwardness inherent in the design of M6. This awkwardness 
arises out of the fact that in the M6 language the
specification for the action to be performed on the result 
of an expression evaluation is at the right hand end of the 
expression to be evaluated; this requirement causes the 
need for a unique pair of characters to be designated for 
the purposes of "quotation"; consequently when the writer 
of procedures in M6 is terminating the writing of an
expression he must mentally reconstruct the sequence of 
alternations of "quoted", "active" and "neutral"
expressions which may be nested one within the other.
In GPM, where the nature of the expression is specified at 
the left end, only one character need be identified to 
serve to provide the right hand boundary for all three 
types.
This means that the user, when closing out his writings, 
need only supply enough such identical characters (plus a 
few for good measure) to enable correct action to 
subsequently take place.
An universal lament of users of both M6 and GPM relates to 
the extremely unnatural method in which arithmetic 
expressions must be organized. The simplest arithmetic 
expression in normal "infix" notation becomes a tortuous
involved nest of strange symbols when expressed in either 
M6 or GPM. A simple solution exists, is incorporated in 
SAM76 and forms the third element of the language.

In addition inspiration for the selection and design of a 
number of the resident functions came from a variety of 
sources (see reference list).
Acknowledgement is made of the contribution made by L. 
Peter Deutsch [U.C. Berkeley] who conceived of nesting an 
expression calling for input inside an expression which 
causes output [Ref. 3] thus:

{OUTPUT,{INPOT}}
Finally acknowlegement and great appreciation is expressed 
for:
The help received from Neil Colvin [M.I.T.] who provided me 
with an 8080 simulator for the PDP-10 and who coded a 
preliminary version of the language to run in an 8080 based 
microprocessor system contributed also materially to the 
development of this language.

Page 18 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 9402B Number 21

28



Barry Lubowsky [Rider College] who allowed me to make use 
of a PDP-10 and who was most helpful with some system 
software problems.
Roger Amidon [Delta Data Systems], whose actual 8080 based 
"ALTAIR" and "IMSAI" microcomputers were used to test and 
debug the software, was also most helpful in developing a 
family of "people” oriented mnemonics and functions 
particularly well suited for the "amateur" user.
Other people who contributed to various details and who 
"people" tested the language are Carl Galletti [T.D.L.], 
Marty Nichols [Newsweek], and Tom Kirk [N.J. Bell].
References

1. Strachey, C. - "A general purpose macrogenerator", 
Computer Journal, Vol. 8, No. 3, Oct. 1965 p. 225; 
1196510001.
2. Hall, Andrew D. - "The M6 macroprocessor", Bell 
Telephone Labs; Computer Science Report No. 2; 1971;
3. Kagan, Claude A. R. - "A string language Processor for 
small machines". Proceedings of the ACM S1GPLAN Symposium 
on the Pedagogical Applications of small Computers, 
University of Kansas, Lawrence, Kansas 1197111181.

II II This description of the SAM76 language
I I Notice 11 is substantially the same that is
IJ____________ [I available from the IEEE Computer Society

Repository, R 76-301 - August 1976.

I | Itie three elements of SAM76

In consequence routines and texts written for M6 processors 
distributed by the Bell Labs outside the Bell System should 
be compatible with SAM76.
Compatibility with M6 is insured by enabling user to 
stipulate whether "resident" or "user defined" functions 
are to be first searched whenever an expression is to be 
evaluated.
Expressions written using the M76 syntax will first cause a 
search of the user defined functions; if no user defined 
function of that name exists then a search is made of the 
resident functions. Expressions written using the S76 
syntax will first search the resident functions.
Although there is syntactic compatibility with M6, the 
implementation in SAM76 is designated M76 because of the 
generally different complement of resident functions, and 
the significant enhancement of the scan algorithm.

The syntactic form of expressions based on the M76 system 
is to be referred to as the "M" syntax.

An infix operator system characterized in I I 
general by the following example for a 11 A76
simple arithmetic expression: |J______
Example [ 5 + 5 * (144/12) ]
Hie syntax of the foregoing system is to be referred to as 
the "A" syntax. Ttie evaluation rules and internal syntax 
may vary between systems for this sub system; a method of 
identification is provided within the framework of SAM76.

I I Input - Activating - Scanning and Output

The first element is designed around the II II
characteristics described by STRACHEY in I I GPM - S76 I I
his GPM (General Purpose Macro Generator) [J__________ [I
language.
Strachey defined its general forms as follows:

Active
Neutral %VAL,function,arguments, . . . :

In order to avoid ambiguity and to provide consistency the 
above is changed for the purposes of SAM76 as follows:

Active %function,arguments, . . . .. - /
Neutral &function,arguments, . . . .• • /
Protected ! . . . protected string . ,. • /
In addition changes and extensions are made to the language 
originally described by Strachey. Ihe modified form 
incorporated in SAM76 is to be known as S76; this is a 
fully operational proper subset of SAM76.
The syntax 
referred to

used in connection with the S76 system is 
as the "S* syntax of SAM 76.

to be

The second element is substantially as 11
described by Andy HALL for the M6 II M6 - M76 I I
language attributed to Me ILROY and |J______________[I
MORRIS:

Active ♦function,arguments, ....... :

Neutral ♦function,arguments, ....... ;

Except for different function mnemonics no change was made 
in the syntax and notation of M6 for the purposes of SAM76.

11 the flow of characters, be they 
I I Input and 11 procedures (programs) or just plain text
I I Output I I between the SAM76 processor and either
IJ___________[I the user or other sources or destinations

is under the control of two resident
SAM76 functions:
Input from user (or source) to SAM76 is under control of 
the "input string" function whose mnemonics are "IS"; this 
may be used in either the "S” or "M" syntax either as an, 
active or neutral function thus:

type active neutral
S76 %IS/ or &IS/
M76 ♦IS: or ♦ IS;

Output from the SAM76 processor to the user (or other 
destination) is controlled by the resident "output string" 
function, mnemonic of which is "OS"; active or neutral use 
in both the "S" and "M" syntax is:
type active neutral
S76 %OS/ or &OS/
M76 #OS: or ♦OS;

Initially and whenever its task has been 
completed, the SAM76 processor 
automatically loads a "restart" 
expression which is scanned and provides 
the means for accepting input and 
delivering output; this expression is 
initially defined as the S76 expression:

&os,%is//=

The
"restart"
expression

Number 21 Dr. Dobb's Journal of Computer Calisthenics &  Orthodontia, Box E, Menlo Park, CA 94025 Page 19



The initial or standardized condition 
makes use of the equal sign "=" to 
ACTIVATE the processor; this "activating" 
character may be changed by the user 
through execution of the appropriate 
SAM76 resident function.

I I
Scanning

II
I I
II

When expressions are nested one within 
the other, the SAM76 processor first 
executes the innermost, proceeding from 
left to right.

Hie innermost in the "restart" expression is:
%is/

and therefore input is sought; the user input is terminated 
with an activating character, the (=) will be shown to 
remind the user how to terminate his input.

Once the input is terminated, it is in turn examined by the 
scanner for possible further execution until finally the 
outermost expression of the "restart” expression is 
encountered:

&os. /

where---- the series of periods represents the result of
processing the user input and in fact will be the output 
that is to be given the user.
I I 
I I Quoting or Protection

I I
II 
II

Frequently the user may wish to incorporate in his text 
certain characters which have special meaning to the 
scanning system of SAM76. Typical of these are the 
characters used to indicate the start and end of 
expressions. These are known as "warning characters".
For standardization purposes a processor for the SAM76 
language is initialized with the following assignment of 
"warning characters":
Abbv. Char. Octal Purpose
SA % 45 Begin S76 active expression
SN & 43 Begin S76 neutral expression
SP ! 41 Begin S76 protected string
SE / 52 End S76 expr. or protected strir

MB # 43 Begin M76 expression
MA : 72 End M76 active expression
MN * 73 End M76 neutral expression

AS ! 77 Argument separator
QC e 100 Quote single character

BQ < 74 Begin quoted string - Pair 1
EQ > 76 End quoted string - Pair 1
BP ( 50 Begin protected string - Pair 2
EP ) 51 End protected string - Pair 2
BA [ 133 Begin "A - syntax" expression
EA ] 135 End "A - syntax" expression

Strings of symbols found between the above illustrated 
enclosures are said to be "quoted" or "protected" and are 
completely ignored during the scanning process.
Ttie two rules that follow are applied to the scanning 
process with respect to the use of "quoting characters".

I I When an unprotected character designated as a
11 2 II "quoting character" is encountered in the left
1 2___ [I to right scan of an expression, the other

character of the pair is then defined as the 
character which will end the quoted string; this means that 
for the two initially designated pairs shown above, quoting 
or protection may also be achieved as follows:

< or ) (

II
~T I In the process of finding the character which 
II is to terminate a particular quoted string any

______ [I occurrence of the same character as that which
identified the beginning of that quoted string 

must be balanced by a corresponding "end of quoted string"
character.
This is to be differentiated from the action which takes
place in connection with the "protected string" of the "S"
syntactic form:

protected string /

In the foregoing a tally is made of "unquoted" warning 
characters in order to find the slant sign "/" which 
matches the exclamation mark:
The tally count is increased by a count of one - % & ! #

The tally count is decreased by a count of one - / : ;

It should, however, be noted that the "warning characters" 
(symbols used to delineate bounds of expressions) shown in 
the foregoing illustrations and examples are changeable by 
the user and are only representative of initial or 
standardized conditions.
Any of the foregoing "warning characters" may be changed 
using the appropriate SAM76 resident function; the 
abbreviations listed earlier are used to identify the 
particular warning character it is desired to change.

Quoting or 
protecting 
a single 
character

When an unprotected "character quoting 
symbol" is encountered, then the
immediately following character is
considered to be quoted. This is
particularly useful when the user wishes 
to quote single characters, such a
warning character, without having to

maintain a balance of quoting character pairs.

Initially the "character quoting symbol" is set to be the 
"camiercial at" ( @ ).

I

I I 
I I

Using the SAM76 syntax, functions, and trace

In both the "S" and "M" forms of SAM76, 
the equivalent of string quotes may be 
provided by any pair of characters 
designated for that purpose. Initially 
two such pairs are defined and consist of 
the following balanced pairs of 

enclosures:

In the examples that follow the I ... | arrangement is used 
only to delineate output at the user terminal; if for 
instance the user wished to add two numbers making use of 
the "A" syntactic form, the following might be observed:
[ 5 + 5  ]=|10|

Quoting or 
protecting 
a string

Page 20

30

Dr. Dobb's Journal o f Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Number 21



IT f| In the following example the M76 syntax
I|M76 example I I is used to create a "macro" which when
||___________ || invoked will square any desired number: |DT,t,s,dl| Define Text with id number

»DT,3Q/’C#MU,ql,qli>i- DT means Define Text
MU means Multiply 
SQ is name given to text

#PT,SQ,ql:= PT means Partition Text

There are four possible actions which may ensue when the
macro, oc user defined function named SQ is to be invoked:

1. #SQ,5:=I251 value returned is 25

2. #FT,SQ,5:=1251 FT - Fetch Text, value 25

3. #SQ,5;=I25I value returned is 25
4. #FT,SQ,5;I#MU,5,5:I value is Text of SQ

This function places in the "text area" the string denoted 
by "s" in the expression shown above; this text is given 
the name denoted by ”t”. An arbitrary identification 
decimal number denoted by "dl" may also be included as part 
of the "text" record. Previously defined text with same 
name is erased and replaced with this definition.
Examples:

M76 #DT,NAME,THE SKY IS BLUE:

S76 %DT,NAME,THE SKY IS BLUE/
In the foregoing examples no id. number was desired, and 
consequently the default value of zero is stored as part of 
the record created by this function.

1 [ I The foregoing example is repeated below
IS76 example I I making use of the S76 syntax; however to
J___________[i illustrate its use, the infix system is

used for the actual multiply function:
%DT,SQ,![ql * ql]//=

%PT,SQ,ql/=
e
1

ql is dummy variable 

ql becomes partition valu

The four invocations of SQ are shown below:
1. %SQ,5/=1251

2. %FT,SQ,5/=|251
3. &SQ,5/=1251
4. &FT,SQ,5/=I[ 5 * 5 ) 1

value is 25 

value is again 25 
value is still 25 
value is now "text” of SQ

IT
Resident
Functions

I I

In general the mnemonics used in SAM76 to 
identify the resident functions are 
composed of two alphabetic characters.

____________ This is not a restriction imposed on the
language, and three or more alphabetic 

characters may be used to identify resident functions. In 
fact the user may wish to employ the "0F" ("wh@” (what)
Functions) mnemonic to ascertain the mnemonics in actual 
being in his system.
It should be remembered that when the "0" sign serves the 
purpose of "quoting single character" then the expression 
to list the resident functions would be:
M76
S76 %00F, /

where " " is the string of characters which will
precede each resident function name in the result of 
executing this expression.

Descriptions of the functions and examples in which either 
S76 or M76 syntax is applicable employ the I (Long Vertical 
Mark) character to bound the expression. In actual use the 
I is replaced by the appropriate pair of warning 
characters.

In the case of "null" valued functions where the neutral 
form of the expression is to be illustrated, the \ 
"reverse slash" is used in lieu of the I.
The formal description of the "DT" - "Define Text" function 
is given below to illustrate the manner of presenting SAM76 
resident functions.

Hie "VT" 
View Text 
function

Texts in the "text area" may be examined 
without evaluation using the "vt" 
function. This examination will display 
location and value of any "partitions", 
"multi-partitions", and the text 
divider(s) when at a location other than 
the head (or extreme left) end of the text.
Initial conventions for the display within a "text" of 
partitions, multi-partitions and text divider(s) are:

[1], (2), [d]

[#1], [12], ... [#d]

n

Partitions 

Multi-partitions 
Text Divider

When in the "Trace" condition, active 
expression about to be evaluated will be 
shown bounded by the I, neutral 
expression by \, regardless of the syntax 
(M or S) of the expression.

Trace

I T  Tl The M6 language provides a unique
I I "id" I I identification number for each of the 
I I numbers I I resident functions of the language, and
IJ___________ [I means for the user to assign a similar

type of number to defined functions. This 
numbering concept is preserved in SAM76; numbers between 1 
and 99 inclusive are not assigned to any resident SAM76 
function unless its name and operation is absolutely
identical to its M6 counterpart. This permits user defined 
functions to be written to mimic M6 functions if desired. A 
list of M6 functions and their assigned "id" numbers is 
given in an appendix.

User
defined
function

To illustrate, the M6 function "DEF" 
might be mimicked in the SAM76 system as 
follows:
la. %DT,DEF,!%NI,<&>,<%>/DThipl</>//

2. %MP,DEF,mpl/
examination of the defined text (or function) DEF can be 
made using the SAM76 "VT - View Text" resident function 
thus:

3. %VT,DEF/= | %NI,<&>, <%>/DT[#!)</> I
in the foregoing "mpl" is a dummy for a "multi-partition” 
which will be created by the second expression and 
visualized by the VT function as [#1].

Number 21 Dr. Dobb's Journal of Computer Calisthenics &  Orthodontia, Box E, Menlo Park, CA 94025 Page 21

31



Hie function "NI - Neutral Implied" is used to provide the 
expression using DT with either the active or neutral 
warning character as used with an expression containing 
"DEF" as its operative argument.

A simple way of doing some procedure IT
"proc" some desired "n" number of times I I do "n" Times
is exemplified by the use of "ds - IJ____________
duplicate string" in the expression 
named "dnt":

Alternatively expression (la) could have been written in 
one of the following ways,with exactly the same end effect:
lb.
lc .

Id.

le .

%DT, DEF, <%NI, @&, (a%/DTrapl/>/ 
#DT,DEF,<#NI,@&,@%:DTmpl/>: 
#DT,DEF,<#DTmpl%NI,@:,?:/>: 
#DT, DEF, <#DTVnpl#NI, <;>,<:>:>:

IT 
I I 
I I

Algorithms in the SAM 76 Language

I introduction
In the algorithms described and 
illustrated in this section, use is made 
of the procedure named "print" to 
display the script of the functions.

expressions, and other text strings.
The "print" function is useful in that it augments the 
capability of the "vt - view text" function by prefixing 
each individual "text" displayed with its name bounded by 
angle brackets; assuming that texts have been created as 
shown:

tr............ ..............
{} %dt,a,apple/=
{} %dt,b,bottle/= 
{} %pt,b,t/=
{}

The use of "print" would cause the following display:
< a > 
apple
< b >
bo[l][1]le

The need and use of the "print" 
expression was described earlier; the 
expression to accomplish this task uses 
a multi partition value #2.

Tl
print I I 

II

Typical use to print out name and contents of the text area 
which in this example only contains the "print" expression 
would be:

t r
{}
{}
U
{}
U
{}

%print%lt,(,)//=
< print >
%ii,[1],,,!os,
(< [1] >)/%vt,[l]/%os, 
/%print[*2]///

< dnt >
%ds,[1],!%proc///

The simple recursive function named II
"fac" generates the factorial of any II
number which replaces partition value 1 IJ
in its use.
< fac >
%ig,l,[1],1,!%mu,[1],%fac,%su,[1],1/////

{} %fac,5/=120
{}

Tl
factorial 11

This recursive function named "exp" is 
used to generate the exponential of "m" 
to the "n"th. power; in use "m" replaces 
partition value 1, and "n" partition 
value 2.

II II
11 exponential 11 
II_____________II

< exp >
%ig,[2],,!%mu,[1],%exp,[1],%su,[2],1////,1/

rt------------------------
{} %exp,3,7/=2187
{}

The recursive expression named "mm" 
extracts the ”m"th. root of any number I I
"n"; it should be noted that this II
function makes use of the expression I|
named "exp", which generates an 
exponential.
< mrn >
%ig,%exp,[3],[2]/,[l],
!%su,[3],1//,
!%mrn,[1],[2],%ad,[3],1////

t l — .............................
{} %mrn,2187,7/=3
{}

II II
I I "m"th. I I 

root of "n" I I

tensor
Tl
II
II

Expression named "tensor" is used to |1
generate a list of successive numbers 11
separated by the size of the list IJ_
is specified by the integer number which
replaces partition value 1 in the expression.

< tensor >
%ig, [1],1,!%tensor,%su,[1],1//.[1]/,1/

A frequently needed capability is that 
of generating "roman" numbers, as for 
text section and chapter headings; when 
function "dtr" is invoked with a decimal 
number as its argument, the value 
returned is the same in roman notation.
Thanks are extended to Jim Gimpel, of the Bell Telephone 
Laboratories for suggesting this as a most useful adjunct 
to the SAM76 language, as it is to the SNOBOL language.

Page 22 Dr. Dobb’s Journal o f Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Number 21

32



< dtr >
%dt,x,[l]/%roml/%y/*et,x,y,z/

< roml >
%ig,%crd,x/,,!%rom2,%fc,x//%roml///

< rom2 >
%dt,z,[1]/%pt,z%d//%dt,z,%z*r///*pt,y%u//%dt,y,%y%t//%z//

< d >
,0,1,2,3,4,5,6,7,8,9

< r >
,,I,II,III,IV,V,VI,V1I,VIII,IX
< u >
,I,V,X,L,C,D,M

< t >
,X,L,C,D,M,*,$

The "hex" freak can fulfill his desires 
by defining the "htr" expression to 
achieve "hex to roman" conversion:
< htr > 
%dtr,*xd,[1]//

< hanoi >
%ii,[1],0,,!%hanoi,%su,[1],1/,[2],[4],[3]/!
Move Ring [1] from [2] to [3]/
%hanoi,%su,[1],1/,[4],[3],[2]///
Given the need to move four rings from "hither" -ii?-"yon", 
using "thither" as a way station, the monks needed only to 
follow the following sequence to do the task in a minimum 
length of time:

T T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
{} %hanoi,4,hither,thither,yon/=
{} Move Ring 1 from hither to yon
{} Move Ring 2 from hither to thither
{} Move Ring 1 from yon to thither
{} Move Ring 3 from hither to yon
(} Move Ring 1 from thither to hither
{} Move Ring 2 from thither to yon
0 Move Ring 1 from hither to yon
{} Move Ring 4 from hither to thither
(} Move Ring 1 from yon to thither
{} Move Ring 2 from yon to hither
{} Move Ring 1 from thither to hither
u Move Ring 3 from yon to thither
{} Move Ring 1 from hither to yon
{} Move Ring 2 from hither to thither
n Move Ring 1 from yon to thither
U

I I hex to roman I I
I  I_____________II

The user often finds it necessary to 11
derive a series of answers resulting I I loop 11
from the execution of some script for a |J____________[I
range of numbers "nl” to "n2"; the 
script loop provides this capability by enabling the user 
to specify for partition 1 the name of the function, the 
lower of the two numbers ”nl" as partition 2 and the higher 
number ”n2" as partition 3.
< loop >
%zs,6,[2]/%zs,7,*su,[3],[2]//%zi,7/%lpl,[1]/
< lpl >
%lp2,[1],%zq,6//%zi,6/*zd,7,,,!%lpl,[1]///

Often times it is desired to execute a || II
procedure on each and every one of some i| repeat 11
arbitrary number of "texts" in the |J___________ [|
storage area; as an example a script
designed to provide a list of text names and the count of
characters in each text will be illustrated; the key to
this script was the use of "mt - multi part text"; it was
used to create the multi partition value "12" seen in the 
expression named "repeat".

< repeat >
%ii,[1],,,!%procl,[l]/%repeat[#2]///

< lp2 >

>%ps,-4, ,[21/ %[1],[2]/

For example the user wishes to ascertain the "roman" number 
equivalent of the decimal numbers from 105 to 116:

tr
{} %loop,dtr,105
(1 105 CV
{} 106 CVI
{} 107 CVII
{} 108 CVIII
{} 109 CIX
{} 110 CX
(1 111 CXI
{) 112 CXII
(} 113 CXI 11
{} 114 CXIV
{} 115 CXV
(}
11

116 CXVI

The expression named "hanoi" is a II Tl
classical example of recursive 11 hanoi |I
capability; although the original is |J____________ |j
said to be based on monks moving rings
between the three towers of Bhrama, the name "hanoi" seems
to be better known for this puzzle.
Hie expression shown below was conceived by Dick Stone; 
solves the problem, with a minimum number of moves:

it

< procl >
%os,
%ps,10, ,[l]/%ps,-5, ,%crd,[1]///
If, for instance, the only texts in the text area were 
"repeat" and "procl", then the use of repeat with an "It - 
list text function" would appear as follows:

t r
{}
{}
{}
{}

%repeat%lt,(,)//= 
repeat 26
procl 32

The "skim" expression "skims off" the 
first appearance of each different 
character of the string which is placed 
as an argument to the expression; the 
result is returned as the value.
< skim >
%dt,,![l]//%rs,%i//%et,/
< i >
%ig,%crd,/,,!%k,&fc,////
< k >
%pt,,[l]/%i,(l]/![l]/
A simple example of the use of "skim" followsr

skim

t r
{}
{}

%skim,MISSISSIPPI/=MISP

Number 21 Or. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 23

33



In his book "Algorithms in SN0B0L4" Jim Gimpel, the author, 
offers SKIM as an example of string manipulation; it is 
interesting to note the typing effort required for the same 
function in each language; it is assumed that a speed of 
ten words per minute (or one character per second) is 
reasonable for intellectual typing. At that rate the SAM76 
script would take approximately 100 seconds, while the 
SN0B0L4 example would require approximately 143 seconds to 
typo up-

SAM 76 Language Functions 11
____________________________ II

The SAM76 language functions described in the following 
pages represent a first draft for test and evaluation 
purposes, and include all of the functions available in a 
processor for that language initially coded for the INTEL 
8080 and Zilog Z-80 microprocessors.
In particular these functions properly represent the action 
expected for processors which have the <ncra> 
identification; see function [@n].
Hie references listed below should be used to provide 
information as to language syntax, method of use, and 
applications:

1. "SAM76 - A language based on I I II
"Strachey's GPM and Me Ilroy's M6", || References II
by Claude A. R. Kagan, dated august |J______________ [I
1976, and available as report R
76-301 from the IEEE Computer Society, 5555 Naples Plaza,
Long Beach, CA, 90803.
2. "SAM76 Language Primer" to be published.

3. Notes on loading and using SAM76, from the Amateur
Computer Group of New Jersey.

The author would greatly appreciate feedback, particularly 
if errors are found in this document, or if the definitions 
do not seem to correspond to the action encountered in a 
given processor.

xnl,ynl, __ xn,yn Increments in X and Y
con Condition
EQ Equal
GT Greater Than
LT Less Than
ZE Zero
GE Greater than or Equal
LE Less than or Equal
UC Upper Case
LC Lower Case

When a radix greater than 10 is used upper case alphabetic 
symbols represent the ensuing integers starting with "A" 
being equivalent to 10 in base 10, "B" to 11, and so on. 
Lower case characters are used when the radix exceeds 36.

Function Definitions

238 - |@f,s0| wh@ are Functions

Hie value of this function is a list of built-in functions 
available within the system. Each function mnemonic is 
preceded by the string of characters symbolized by "s0". It 
is advisable to use the "neutral" form of expression as 
shown below:

&@@f, /={value will be list of functions}
Note use of two since that symbol is a warning
character it must be protected, and in the above example it 
is . used as the single character protector to protect 
itself.

239 - |@n| wh@ is processor ser. Number
The value returned through execution of this function is 
the version number of the processor being used. This number 
is tested by some of the functions - and may also be so 
tested by the user - to ascertain c xnpatibility between 
scripts and run time load modules that may be moved between 
systems and users.

Ancelme Roichel 
Box 257 - RR1 
Pennington - N. J., 08534

Notation used in list of functions

♦ Preliminary definition - no ID number assigned
I function,argl,arg2,...,argn| Active form of execution
\function,argl,arg2,...,argn\ Neutral form of execution

@ "at" (wh@ means "what")
c2,cl, ... ,c Single characters
s2,sl, ... ,s Character strings
sO Prefixing character string
t2,tl, ... ,t Names of Texts
f2,fl, .,.. ,f Names of Files
d2,dl, .... ,d Decimal Numbers
n2,nl, .,.. ,n Numbers in current radix
x2,xl, .... ,X Binary numbers (octal/hex)
vz Value if function fails
vt Value if function True
vf Value if function False
vO Value if function zero
v+ Value if function positive
V- Value if function negative
dev Device
a2,al, .. . .  ,a Abbreviations

237 - |@t| wh@ is processor Title
The value of this function provides information as to the 
authorship of the processor being used; a typical example 
is:

&@@t/=<ncra> indicating that the authors are: 

"Neil Colvin Claude Roichel Roger Amidon.

159 - |ab,sl,s2,vt,vfI Alphabetic Branch
Itiis function compares the character strings denoted by 
"si" and "s2" in terms of their "ASCII" binary value; if 
the string "si" has a lesser value than the string "s2" 
then the value of the expression is the string denoted by 
"vt", else the value is the string denoted by "vf"; if the 
value strings are expected to contain executable or 
syntactically meaningful symbols they should be protected 
within the expression.

128 - Iad,nl,n2,n3,...,n| Add

The value of this expression is the arithmetic sum of the 
integer numbers denoted by "nl", "n2", ... "n". Each of the 
arguments is examined from right to left until a symbol not 
representing a valid number in the current number base is 
encountered; non numeric symbols prefixing the arguments 
are ignored with the exception of those in argument "nl" 
which is carried into the value string of the expression.

Page 24 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025  Number 21

34



For example: 148 - Icld,tI Characters Left of Divider
%ad,dog5,cat6/={dogll]

Negative numbers are indicated in the usual manner with a 
sign which must immediately precede the string of 

integers it applies to thus:
*ad,dog-5,cat6/={dogl}

Ommitted arguments (such as adjacent commas) have the value 
of the "null string" and a numeric value of zero (0) as 
illustrated in the following example:

%ad,dog,/={dog0}

160 - Iai,s0,sl,s2,...,sl Alphabetic Insertion

The value of this function is a character string in which 
the string denoted by "si” has been inserted ahead of the 
first of the subsequent argument string which has a greater 
alphabetic value; each of the strings which form the 
arguments of the expression are returned with a copy of the 
string symbolized by "sO" preceding it.
187 - |and,xl,x2| And the bits
The value of this function is the result of performing an 
anding of the two binary numbers represented in the current 
"X" base by "xl" and "x2".

161 - |as,s0,sl,s2,...,sl Alphabetic Sort
The value of this function is a character string in which 
the sequence of the strings denoted by "si”, "s2", ... "s"
is rearranged to be in proper alphabetic sequence; each of 
these strings is preceded by the string denoted by "sO" in 
the result:

%as,(,),horse,cat,dog/={,dog,cat,horse}

Note the use of "(,)" for "sO"; this is typical of lists 
that the user may wish to use in a variety of functions 
which have arbitrary number of arguments.

220 - |bf,f,vz| Bring File
Execution of this function serves to bring from auxiliary 
storage the file whose name is denoted by "f"; if this file 
does not exist, then the value of the function becomes the 
string symbolized by "vz".

113 - |ca,s| Change Activator (current)
\ca,s\ Change Activator (initial)

The purpose of this function is to change the symbol which
terminates input from its current value to that denoted by 
the first character of the string denoted by "s"; active 
form is used to change the operational activating character 
whereas the neutral form is used to change the initial 
table.

195 - |cfc,dl,s| Change Fill Character schema
\cfc,dl,s\ Change Fill Char, (initial)

The purpose of this function is to enable the user to
specify the number of that character which is the first one
of the string denoted by "s" that will be automatically 
output at the beginning of each "new line"; usually these 
will be "nulls" but they may be any other character the 
user wishes to use. Active form of the expression changes 
the table in active use, while the neutral form changes the 
initial table; see [cnb].

193 - |cin,tl,dl,...,t,d| Change Id Number 
To be defined and coded.
Number 21

The value of this function is the (decimal base) number of
characters located between the beginning of the "text"
whose name is denoted by "t" and the current location of
the internal "text divider" of said text.

191 - |cll,d| Change Line Length (active)
\cll,d\ Change Line Length (initial)

The purpose of this function is to change the number of 
characters that the processor will output before 
automatically inserting a "new line" code; the desired 
value is the decimal number denoted by "d" in the 
expression; the active form changes the actively used 
constant, while the neutral form changes the initial 
condition table; see [cnb].

133 - |cnb,d| Change Number Base (active)
\cnb,d\ Change Number Base (initial)

The purpose of this function is to change the radix of the 
processor's arithmetic functions; this is always expressed 
as the decimal number symbolized by "d" in the expression; 
see [qnb]; active form of the expression changes the value 
of the radix used during the actual operations while the 
neutral form changes the initial table. Note that the 
neutral change can only be effective while the processor is 
in unprotected memory, and will have no effect if the 
processor is executed from read only or protected memory.

266 - |cpc,tl,dl,...,t,d| Change Protection Class 
To be defined and coded.

147 - |crd,t| Characters Right of Divider
The value of this function is the (decimal base) number of
characters located between the beginning of the "text"
whose name is denoted by "t” and the current location of
the internal "text divider" of said text.

203 - |cro,sll Change Rub Out char, schema
\cro,sl\ Change Rub Out (initial)

The purpose of this function is to permit the user to
specify as the first character of the string denoted by 
"si" that symbol desired to serve the character delete 
function; in addition the user may specify the next two 
characters of that string to be output before and after, 
respectively, the deleted string of characters. The active 
form changes the user table, while the neutral form of this 
function changes the initial table; see [cnb].

132- Ict,tl,t2,t3,...,t| Combine Texts (superseding)
\ct,tl,t2,t3,...,t\ Combine Texts (save current)

The purpose of this function is to create a text, whose 
name is denoted by "tl" which will contain the 
"concatenation" of the texts whose names are denoted by 
"t2", "t3", ... "t".
The active form of the expression will also delete the 
current text named "tl" if any; the neutral form of the 
expression will not cause deletion of any pre-existing 
texts.

250 - |cwc,sl| Change Warning Character
\cwc, ... \ Change Warn. Char, (initial)

The purpose of this function is to allow the user to select 
other symbols for syntactic purposes than those initially 
defined in the language; see [gwc). The active form of this 
function changes the current user tables while the neutral 
form changes the initial table; see [cnb].

Page 25Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

35



261 - |cws,d| 
\cws,x\

Change Work Space 103 - Idt,t,s,dl,d2| 
\dt,t,s,dl,d2\

Define Text (superseding) 
Define Text (save current)

This function allows a respecification of the upper limit 
of space required for function execution and text storage; 
the neutral form is used to allow a binary (hex, octal ... 
) number denoted by "x" to be entered; the active form uses 
the decimal number system instead; see [qws].

171 - |cx,s0,s| Character to "X"
This function returns as a value a sequence of binary 
numbers, each preceded by the string denoted by "s0" which 
result from converting the character string denoted by "s”; 
the conversion is in the current specification for the "X" 
base; see [cxb, qxb, xc].

200 - |cxb,d| Change "X" Base (active)
\cxb,d\ Change "X" Base (initial)

Through use of this function, the user may change the 
specification of the radix (or base) for those functions 
which operate in the "X" base; "d" symbolizes the decimal 
value of the desired new radix, and this should normally be
either "2" or "4" or "8" or "16"; active and neutral forms
operate with respect to the "X" base in the same manner as
described for the "cnb - change number base" function.

This function is used to create a "text" whose name is 
denoted by "t”, containing the string of characters 
symbolized by "s”; arguments denoted by "dl", "d2" are for 
undefined purposes.
The active form of the expression serves also to erase the 
text whose name is "t" if currently in the text area; the 
neutral form will not cause any text deletion.

173 - |dx,d,x| Decimal to "X"

The value of this function is that number which results 
from converting the decimal number denoted by "d" to its 
equivalent in the current "X" base; the argument symbolized 
by "x" is undefined; see (xd, cxb, qxb].

206 - Iea,tl,t2,...,t| Erase All excepting
This function is used to erase from the text area all 
defined texts; excepted from this erasure are the texts 
whose names are denoted by "tl", "t2", ... "t"; full
erasure is accomplished as shown below;

%ea/=

259 - Ida,s0| Date 207 - |ed,t,dl,d2,vz| Extract "D" characters

The value of this function is the current calendar date in 
the sequence of "day, month, and year"; each of these 
elements is preceded by the string of characters denoted by 
"s0".
The date may be either user entered (using the "sda" 
function) or may be automatically generated by a system 
clock or calendar; see [sda].

131 - |di,nl,n2,vz| Divide
The value of this function is the integer result of 
dividing the number denoted by "nl", by the second number 
denoted by "n2"; if the result of the division would be 
indeterminate - "n2" = zero - then the value of the
expression is that string denoted by "vz".
Treatment of non numeric, signs, and null strings is 
identical to that described in the "ad" function.

208 - Ida,si Define Quote
The purpose of this function is to enable the user to 
specify the character that is to be recognized by the scan 
algorithm as an unconditional protecting character. To be 
further defined.

- ldr,t,a,o,v|

To be defined and coded.

164 - |ds,d,s|

Define Relationship

Duplicate String
The value of this expression is a concatenation of that 
number of copies of the string "s" which is denoted by the 
decimal number "d".

This function may be quite properly used to "DO" something 
a desired number of times as illustrated below:

%ds,5,!%dt,x,%ad,3,%x/////=

This example shows a most awkward way of creating a text 
named "x" which contains the product of 5 and 3.

The value of this function is a string of characters 
extracted from the text whose name is denoted by "t"; the 
first character returned is that which is found distant to 
the right of the text divider by the number denoted by 
"dl”, and the number of characters returned is denoted by 
the number "d2".

If there are absolutely no such characters available then 
the value of the expression is that string denoted by "vz" 
which is always treated actively; this is regardless of 
whether the original expression was used actively or 
neutrally.

224 - |ef,fl,f2,...,f| Erase Files
This null valued function is used to erase from auxiliary 
storage the files whose names are denoted by "fl", "f2",

II £11

151 - Iep,t,pl,p2,...,p| Erase Partitions
This function serves to delete from the text named "t" any 
partitions that may be found in it to the right of the 
internal text divider.

If arguments "pi", "p2", and so on are specified, then only 
those partitions with values denoted by these arguments are 
deleted.

- ler, ... I 
To be defined and coded.

104 - |et,tl,t2,— ,t| 
\et,tl,t2,...,t\

Express Relations'lip

Erase Text
Erase all occurences of Text

This function is used to erase from the text area texts 
whose names are denoted by the arguments of the expression; 
the active form of the expression erases only the latest 
version of the named texts, should more than one version 
exists in the text area.

Page 26 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Number 21

36



249 - Ietb,sI Erase Trailing Blanks 140 - |fdm,t,d,s,vz| Fetch "D" Matches

This function, which Neil Colvin insisted be made 
available, serves to delete from the character string 
symbolized by "s" all blanks which immediately precede the 
occurence of "new line" codes; particularly useful when 
reading punched cards with many trailing blank columns.

112 - |ex,f| Exit

This function is used to exit from the processor back to a 
system monitor; if the expression contains any arguments, 
such as "f" then a file is created in auxiliary storage 
which contains all of the user work space including 
variables, working area and text area.
Ihis file is given the name denoted by "f", and may be 
reloaded on any other system and the action interrupted by 
the execution of this function is then resumed at the same 
point.
Successful resumption of action is subject to compatibility 
as determined by verification of the system authorship and 
version number.

226 - |fb,f,vt,vfl File Branch

The value of this function is the string symbolized by "vt" 
if the file whose name is denoted by "f" is to be found in 
external storage; if not the value of this function is that 
string symbolized by "vf".

137 - |fc,t,vz| Fetch Character

The value of this function is the character to be found 
immediately to the right of the internal text divider of 
the text whose name is denoted by "t"; if such a character 
exists then the text divider is advanced to point to the 
next available character - or alternatively to the end of 
the "text".

If no character is available then the value of the
expression is that string denoted by "vz" which is always
treated actively.

138 - |fdc,t,d,vz| Fetch "D” Characters
The value of this function is that decimal number of 
characters denoted by "d" which is to be found to the right 
or left of the internal divider of the text whose name is 
denoted by "t"; a positive number specifies to the right, 
and a negative number to the left; the text divider is then 
relocated to point to the next character available if to 
the right, or to the first character returned in the value 
string if to the left.
Should there be absolutely no characters (not even one) 
available for the value, then "vz" represents the string 
which will be returned as the value of the expression, and
this value is always treated actively.

The value of this function is a character string taken to 
the right of the text divider of the text whose name is
denoted by "t"; the contents of the text "t" is scanned
searching for occurences of the string denoted by "s"; when 
that number of occurences equal to the number "d" is found 
then the divider is relocated to point to the next 
immediately following character, and the value string is 
that which lies between the old and the new divider
locations.

If the required number of matches is not found, then the 
divider is not moved, and the value of the expression is
that string denoted by "vz", which is always treated
actively.
If the desired number is negative, then the action takes 
place to the left of the divider instead of to the right.

141 - |fe,t,vz| Fetch Element
The value of this function is that string of characters 
which is to be found immediately to the right of the 
current location of the divider in the text named "t" up to 
the next encountered partition - or end of text.

The text divider is moved to point to the immediately 
available next character.

If absolutely no characters are to be found, then the value 
is the string denoted by "vz", which is always treated 
actively.

142 - |ff,t,d,vz| Fetch Field

The value of this expression is that string of characters 
to be found to the right of the first occurence of a
partition of value symbolized by "d" until the next
partition is encountered, or to the end of the text named
"t"; the divider is then moved to point to the next
available character.
If absolutely no characters are returned, then the divider 
is not moved, and the value of the expression is the string 
symbolized by "vz" which is always treated actively.

143 - |fl,t,s,vz| Fetch Left match

The text named "t" is searched to the left of its internal 
divider for a string identical to that denoted by "s"; if 
such a string is found then the divider is moved to point 
to the first character of that string and the value of the 
expression is that group of characters to be found between 
the new location of the divider and its old location.

If no such matching string is found, then the divider is 
not moved, and the value of the expression is the string 
"vz" which is always treated actively.

139 - |fde,t,d,vz| Fetch "D" Elements
The value of this function is that string of characters to
the right or left of the text divider of the text whose 
name is denoted by "t" which comprises the number of
elements specified by the decimal number "d"; an element is
that which is found between partitions.
The divider is then moved either to the right or left to 
point either to the next character to be read (if to the 
right) or that character which corresponds to the first 
character of the value string (if to the left).
If absolutely no characters are returned, then the divider 
is not moved and the value of the expression is that string 
symbolized by ”vz" which is always treated actively.

145 - Ifp,t,xl,...,xI Fetch Partition
The value of this function is the next partition to be 
found in the text whose name is denoted by "t"; the text 
divider is moved to point to the next ensuing character.

144 - |fr,t,s,vz| Fetch Right match

The text named "t" is examined starting at the current 
location of the text divider for a string identical to that 
denoted by "s"; if such a string is found, then the divider 
is moved to the next character which follows this string 
(or the end of the text) and the value returned is that 
string of characters which lies between the old and the new 
locations of the text divider.

Number 21 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025  Page 27

37



If no such match is found, then the value of the expression 
is the string denoted by "vz", always treated actively, and 
the divider is not moved.

106 - |ft,t,sl,s2,__,s| Fetch Text
The value of this function is the contents to be found in 
the text named "t" to the right of its internal text 
divider.

Any partitions found in that portion of the text are 
replaced with the strings denoted "si", ”s2", ... "s", in
such a manner that partitions with value "1" are replaced 
by "si", value 2 with "s2" and so forth.

The value of this function is one character the source of 
which is the currently selected input device; this may be 
absolutely any one single character in the system character 
set.

115 - IicI Input Character

116 - |id,d| Input "D" characters
The value of this function is a stream of characters from 
the current selected input device; the action is terminated 
when that number symbolized by "d" has been received; in 
the case of certain sources, an End of File will also 
terminate.

210 - |ftb,t,s,vz| Fetch To Break character
The value of this function is a string of characters taken 
from the current location of the internal text divider of 
the text whose name is denoted by "t" to the first ensuing 
character in text "t" which is found in the string 
symbolized by "s"; the text divider is moved to the first 
character which follows that which terminated the scanning 
action.
If no character is returned, then the divider is not moved 
and the value of the expression is that string symbolized 
by "vz" which is always treated actively.

211 - |fts,t,s,vzl Fetch To Span character

The value of this function is a string of characters taken 
from the current location of the internal text divider of 
the text whose name is denoted by "t" to the first ensuing 
character in text "t" which is not found in the string 
symbolized by "s"; the text divider is moved to point to 
the first character which follows that which terminated the 
scanning action.

If no character is returned, then the divider is not moved 
and the value of the expression is that string symbolized 
by "vz" which is always treated actively.

212 - |hc,s| How many Characters
The value of this function is the actual number of 
characters comprising the string symbolized by "s".

150 - |hm,t,s| How many Matches
The value of this function is that number of occurences of 
the string of characters symbolized by "s" in the text 
whose name is denoted by "t".

153 - lidt,d| Input "D" Texts
This function serves to place into the text area "texts" 
which are loaded from various types of auxiliary storage 
media and created through use of the "output text" 
functions.

136 - Iig,dl,d2,vt,vfI If Greater
This expression compares in an arithmetic sense the two 
strings denoted by "dl" and "d2"; if the value of "dl" is 
greater than that of "d2", then the value of the expression 
is that string symbolized by "vt", else the value is that 
string symbolized by "vf".

135 - Iii,sl,s2,vt,vfI If Identical

Strings symbolized by "si", and "s2" are compared, if found 
to be absolutely identical, then the value of the 
expression is that string symbolized by "vt"; if not 
identical the value is the string symbolized by "vf".

117 - Iim,sl,s2,...,s| Input to Match
The value of this expression is a stream of characters 
coming from the currently selected input device; 
termination of this stream occurs as soon as one of the 
strings symbolized by "si”, "s2", ... "s" has been
encountered; the value includes the string that caused 
termination.

102 - |is,dev| Input String

The value of this function is a stream of characters coming 
from the currently selected input device; termination 
occurs as soon as the currently specified "activating 
character" is encountered; this activating character does 
not become part of the value string of the function.

149 - |hp,t,d| How many Partitions
The value of this function is the number of partitions to 
be found to the right of the text divider in the text whose 
name is "t"; if there is no explicit third argument, then 
the value represents the total number of partitions; if 
argument three is specified, then the value is that number 
of partitions whose value is equal to the number symbolized 
by "d".

114 - Iht,tI Hide Text
\ht\ Hide all Texts

The purpose of this function is to put a screen or fence in
the text area such that only those texts created after that
whose name is denoted by "t" are available.

This fence is removed by execution of this function with no 
arguments; if it is desired to conceal all of the text 
area, the the neutral form is to be executed.

Page 28

152 - I it | Input Text

the purpose of this function is to place in the text area 
one text loaded from some auxiliary storage media, which is in the format generated through use of the "output text" 
functions.

213 - |iw,n| Input Wait
This function sets up an internal timer which becomes 
effective for the next ensuing input function, such as 
"is", "ic", "idc", "im"; automatic termination of the input 
process takes place at the end of the specified time 
interval even though normal terminating conditions 
specified for these functions may not have been met.

The duration of the time interval is specified by "n" which 
is in seconds.

Dr. Dobb's Journal of Computer Calisthenics & O rthodontia, Box E, Menlo Park, CA 94025 Number 21

38



- |lef,dev| Load External Function
To be defined and coded.

216 - I If,sO,dl... dl List Files
The value of this function is a list of the names of the 
files in auxiliary storage; each file name is preceded by 
the string symbolized by "sO".

Additional arguments are to be defined.

- Hr, ... I List Relationship
To be defined and coded.

If that last previously executed implied "fetch" was 
active, then the value of this function is that string 
symbolized by "vf".

188 - |not,x| Not (complement) the bits
The value of this function is the complement of the binary 
number (in the current "X" base) symbolized by "x".

209 - Inu,sl,s2,...,sl Null

The purpose of this function is to cause execution of the 
function whose name is denoted by "si", with appropriate 
arguments "s2", ... "s"; that function is executed but any 
resulting value string is suppressed.

105 - IIt,s0,dl,d2,__,dI List Texts
The value of this function is a list of the names of the 
texts to be found in the text area; each name is preceded 
by the string symbolized by "sO".

Arguments symbolized by "dl", 
defined.

"d2", have not been

110 - lmc,d|
The value 
character" 
"d".

Multi-partition Character
of this function is the "multi-partition 
whose value is denoted by the decimal number

146 - |md,t,d| 
\md,t,d\

Move Divider to pos. "d" 
Move Divider "d" increments

This function is used to move the text divider in the text 
whose name is denoted by "t". Active form serves to move 
the divider the number of positions from the left end of 
the text if "d" is positive, or from the right end if 
negative; the neutral form is used to advance or retreat 
the divider from its current location that number of 
positions specified by the number "d".

It should be noted that these moves are positional and do 
not distinguish any difference between partitions and 
characters; this is the only function available to position 
the text divider other than immediately preceding a 
character.

109 - |mt,t,sl,s2,...,s| 
\mt,t,sl,s2,...,s\

Multi-part Text all matches 
Multi-part Text next match

This function serves to replace in the text whose name is 
denoted by "t" the strings symbolized by "si", "s2", "s"
with multi-partitions of values respectively "1", "2", ...; 
the neutral form of this function only replaces the first 
occurence of these strings found in the text.

130 - Imu,nl,n2,vz| Multiply

The value of this function is the arithmetic product of the 
numbers symbolized by "nl", and ”n2". The same rules as to 
sign and non numeric matter apply for this function as they 
do for the "ad" function.

Should there be an overflow condition arise as a result of 
the execution of this function, then the value of the 
expression is that string symbolized by "vz".

Ill - |ni,vt,vf| Neutral Implied
This function returns the string symbolized by "vt" if the 
last previously executed implied "fetch text" was neutral.

246 - loj,s,sl,d,s2|
To be defined and coded.

248 - |op,s,sl,d,s2l

To be defined and coded. 

186 - |or,xl,x2l

Output Justified lines

Output Paddded lines

Or the bits
The value of this function is the logical or of the two 
binary number strings "xl" and "x2" expressed in the 
current "X" base.

101 - |os,s| Output String
This function causes the selected output device to output 
the string of characters symbolized by "s".

154 - |ot,tl,t2,...,t| Output Texts
This function outputs to the selected channel, the texts 
whose names are denoted by "tl", "t2", ... "t", in a format 
which preserves all of the internal conditions of the text; 
this includes location of the internal text divider, and 
text partitions if any.

108 - |pc,d| Partition Character
The value of this function is a "partition character" of 
value symbolized by the decimal number "d".

174 - |pl,sl,s2,...,s| Plot
This is a general purpose plotter or display control 
function; details may vary in its use as a function of the 
system in which it is used. Certain subfunctions as 
described below have been standardized:

I pi,If,s0| 
lpl,as,port,time|
I pi,nmI 
|pl,vm|
I pi,call 
lpl,tek|
Ipl,mq,xI

162 - |ps,d,sl,s2|

List of Plotter subfunctions 
Assign output port and time delay 
Output plotter control information 
Return as value control information 
Set up for "Calcomp" plotter 
Set up for "Tektronix" display 
Rotate to quadrant "x"

Pad String
The value of this function is the string "s2" to which is 
added either to its right or to its left enough 
duplications of string "si" so that the total size of the 
value string becomes equal to the number symbolized by ”d"; 
positive values of "d" pad to its right, and negative 
values to its left.

Number 21 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025  Page 29

39



107 - Ipt,t,sl,s2,...,s| Partition Text all matches
\pt,t,sl,s2,...,s\ Partition Text next match

198 - I qrd, 11 Query Right of Divider

The purpose of this function is to replace in the text 
whose name is denoted by "t" the strings symbolized by
"si", "s2", __ "s" with partitions identified by numbers
which correspond to the position of the strings in the 
expression; that is to say "si" is replaced by a partition 
value “1", "s2" by partition value "2" &c.
In its active form, this function serves to replace all 
occurences of the desired strings; in its neutral form only 
the first occurence found is so replaced for each of the 
specified strings.
Action takes place starting at the current location of the 
internal text divider which is not moved by this function.
A particular example of interest might be:

&pt,animal,dog,dog,dog,dog/=

Ihis example would in the text whose name was animal, 
replace the first match with "dog" with partition value 
"1", the second, "2", the third with "3" and the fourth with "4".

196 - Iqfc,s0l Query Fill Character schema
The value of this function is the current specification for 
the optional fill character output immediately after each 
"new line"; the parameters are each preceded by the string 
symbolized by "sO"; see [cfc].

194 - Iqin,s0,tl,t2,...,tl Query Id Number 
To be defined and coded.

197 - |qld,t| Query Left of Divider
The value of this function is the (decimal base) number of 
positions - characters and partitions - located between the 
beginning of the "text" whose name is denoted by "t" and 
the current location of the internal "text divider" of said 
text.

The value of this function is the (decimal base) nunber of 
positions - characters and partitions - located between the 
beginning of the "text" whose name is denoted by "t" and 
the current location of the internal "text divider" of said 
text.

204 - |qro| Query Rub Out char, schema
The value of this function describes the current 
specification for the use of the "rub out"; see [cro].

205 - Iqtal Ouery Text Area used
The value of this function is representative of the amount 
of space consumed in the text area by user defined texts.

251 - Iqwc,a2,al,...,a| Query Warning Characters
Ttie value of this function is a list of the currently 
specified and functional warning characters of the 
language.

262 - Igwsl Query Work Space
\qws\

The value of this function is the upper limit of the user 
work space; active form of this expression yields the value 
as a decimal number; neutral form yields the value in the 
current "X" base.

201 - |qxb| Query "X" Base

Ttie value of this function is the currently set radix for 
the functions which operate in a "binary" or "X" base.

215 - |ra,d,sl,s2,s3,...,s| Return Argument
The value of this function is that string symbolized by one 
of "si", "s2", "s3", ... "s" whose position corresponds to 
the value of the decimal number symbolized by "d".

192 - Iqlll Query Line Length

The value of this function is the current specification for 
the line length; this specification is changed through use 
of the "ell" function.

134 - |qnb| Query Number Base
Hie value of this function is the current value of the 
radix for arithmetic operations and functions.

263 - Ircp,dl,d2,s| Return Character Picture
To be coded.

166 - Iri| Restart Initialized

Execution of this function causes immediate termination of 
any unexecuted scripts, and causes return to the idling 
condition, reinitializing all normally changed user 
specifications.

202 - |qof| Query Over Flow conditions
The value of this function are characters which may be used 
to identify the cause of an interrupt or overflow 
condition.

167 - lqp,tI Query Partition
The value of this function is the decimal identification of 
the next partition to be found in the text whose name is 
denoted by "t"; the text divider is not moved by this 
function.

267 - Iqpc,s0,tl,t2,...,tI Query Protection Class
To be defined and coded.

245 - Irj,s,sl,d,s2|
To be defined and coded.

252 - lrn,n|

Return Justified lines

Random Number
The value of this function is a number ranging between 0 
and "n", randomly selected through a computational
algorithm; see [srn].

189 - |rot,d,x| Rotate the bits

The value of this function is that binary number which 
results from a rotation of the binary number "x" expressed 
ln current "X" base; the number of bits rotated isspecified by the decimal number "d"; the direction is

Page 30 Dr. Dobb's Journal o f Computer Calisthenics &  Orthodontia, Box E, Menlo Park, CA 94025 Number 21



clockwise if the number is positive, and counterclockwise 
if negative.

247 - |rp,s,sl,d,s2| Return Padded lines
To be defined and coded and coded.

165 - |rr,sl| Return to Restart
This function causes immediate cessation of execution of, 
any unexecuted script, forces a return to the idling level 
of the processor and then returns the value of the string 
symbolized by "si"; if that string is an executable 
expression, then said expression is executed.

163 - |rs,s| Reverse String
The value of this function is the string of characters 
symbolized by "s" reversed, end for end.

228 - |saf,dev| Select All File function dev.
Tto be defined.

158 - I sari "Auto Return" on line feed
\sar\ no Auto Return on line feed

Execution of this function serves to enable (if active) or 
disable (if neutral) the automatic generation of a 
"carriager return" code when a "new line" code is output.

260 - |sda,da,mo,yrl Set Date
This function enables the user to set into the system the 
current ( r any other) desired date.

258 - |sti,tl,t2,t3l Set Time
Through use of this function the correct current (or 
incorrect if desired) time of day is established in the 
system.

129 - Isu,nl,n2,...,n| Subtract

The value of this function is the result of subtracting the 
number syiribolized by "n2" from that symbolized by "nl"; all 
rules indicated for sign and non numeric matter in the "ad" 
function apply.

231 - Isw,sl,s2,s3,...,s| Switches
Special system dependent function for user definition.

232 - |sy,sl,s2,...,sl System functions
Special system dependent function for user definition.

127 - |tb,t,vt,vf| Text Branch

If the text whose name is denoted by "t" is to be found in
the text area, then the value of the function is that
string symbolized by "vt", else the value is string
symbolized by "vf".

257 - |ti,sl,s2| Time
The value of this function is the current time of day 
derived from a system clock, in the format HH MM SS, where 
HH represent Hours, MM represent Minutes and SS seconds; 
these elements are separated in the value string by the 
string symbolized by "si".

199 - |sem,dev| 
\sem,dev\

Set "Echoplex" Mode active 
"Echoplex" Mode inactive

This function enables character echo from the system if 
executed actively; if neutrally, then echo generation is 
suppressed.

222 - |sf,f,tl,t2,...,t| Store File
This function is used to place into auxiliary storage under 
the file name denoted "f", those texts whose names are 
denoted by "tl", ”t2", ... "t"; on completion of this
action, the named texts are erased from the text area.

If no texts are named, then the assumption is made that the 
entire text area is to be placed into auxiliary storage.

125 - Itm,dI
\tm\

Trace Mode activated 
Trace Mode deactivated

This function is used to enable step by step execution of 
the scripts and functions of the language; once activated 
each step is initiated by depression of the "new line" key 
("line feed") or a specified number of steps may be 
specified by the number symbolized by "d".

124 - Itmal
\tma\

Active execution 
execution allows 
executed.

enables
display

Trace Mode All activated 
Trace Mode All deactivated

full trace action; neutral 
only of expressions about to be

157 - Isfd,fun,devI 

To be defined and coded.

190 - |sh,d,x|

Specify Function Device

Shift the bits
The value of this function is that binary number string 
which results from a logical shift to the right or left of 
the string whose binary value, expressed in the current "X" 
base is symbolized by "x"; the number of shifts is 
specified by the decimal number "d" and the direction by 
its sign, positive to the right and negative to the left.

253 - |srn,n| Seed Random Number
Through use of this function the at tomatic generation of 
random numbers is initiated; the user seed number is 
symbolized by "n" in the above expression.

168 - |tr,t,s| Trim
This function is used to replace multiple adjacent 
occurences of the character symbolized by "s" with a single 
such occurence in the text named "t”.

218 |uf,f,tl,t2,...,t| Update File
This function combines the action of "erase file" and 
"store file" by first storing a file successfully before 
erasing the old file version.

169 - |ut,ccl
\ut\

User Trap active 
User Trap inactive

Activating of this trap through use of this function will 
cause an automatic execution of a text (or function) whose 
name is denoted by "cc"; this automatic execution takes

Number 21 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 31

41



place whenever the user attempts to make use of system An effective way to return the display pointer to its
interrupt capabilities to escape out of executing "scripts" original location is illustrated as follows:
when it is desired that such escape be inhibited.

u -------------------------- --
{} %ws,U%wx/,%wy//

118- Ivt,tl,t2,...,tI View Texts {}
This function enables examination of defined texts, 
indicating visually the location of internal text divider, 
partitions and their values, as well as multipartitions.

181 - |wc,sl,s| Write Characters

This plotter or display function generates a graphic 
display from a font of vectors named "si"; the string 
symbolized by "s" is the text string to be plotted or
displayed.

175 - |wi,xnl,ynl| Write Initialize
This null valued function serves to create a reference
value for the current position of the display pointer; the 
"x" and "y" coordinates of this position are set equal to 
the decimal integer strings found in the second and third 
arguments respectively.
179 - IwlI Width Left
Ihe value of this function is the incremental value of the 
width of a character being plotted to the left of its 
center of gravity.

178 - Iwrl Width Right
The value of this function is the incremental value of the 
width of a character being plotted to the right of its 
center of gravity.

180 - lws,xnl,ynl,...,xn,yn| Write Straight Lines
This function causes the generation of the appropriate 
control information to cause the display of one or more 
line segments starting at the current position of the 
display pointer. Successive points are referenced by 
consecutive incremental x and y argument pairs. The x and y 
components are expressed as decimal integer strings. The 
sign of the number indicates direction.
Non numeric matter preceding the "x" value causes certain 
auxiliary functions to take place as follows:

U "pen up" or invisible vector
S Scale change for "x" and "y"
A Absolute position vector pair
I Incremental vector pair
Q Quadrant rotation

0 - 3  clockwise, 4 - 7  counter clockwise 
W  Character width information

"x" left and "y" right of center

t t ------------------------------- -------------------------- -- ------------- ------------- ;
{} %dt,rect,(,8,0,0,5,-8,0,0,-5)/=
{} %ws%rect//=
0

Assuming it is desired to draw a rectangle,8 units wide, 
and 5 units high:
170 - |xc,xl,x2,...,xI "X" to Character
The value of this function is a string of characters whose 
value is represented by the numbers in "X" base symbolized 
by "xl", "x2", ... "x".

271 - |xcf,s,x| experimental Change Function
This function is used to assign a user defined machine 
adress symbolized by the "X" base number "x" for the built 
in function whose mnemonic is denoted by "s".

172 - lxd,x| "X" to Decimal
The value of this function is the decimal equivalent of the 
number in the current value of the "X" base symbolized by 
"x".

255 - |xi,port I experimental Input

The value of this function is that number in the current 
"X" base which results from an attempted input from the 
port whose designation in the "X" base is symbolized by 
"port".

123 - Ixj,xI experimental Jump
Execution of this function cause a jump to the memory 
location symbolized in the "X" base by "x"; a return from 
programs encountered at that location will cause normal 
reentry into the system scanner.

256 - |xo,x,port| experimental Output
Execution of this function enable output of the "X" base 
value of "x" to the port whose "X" base id is symbolized by 
"port".

270 - |xqf,s| experimental Query Function
The value of this function is the machine adress in "X" 
base radix of the entry point for the function whose 
mnemonic is denoted by the string "s".

119 - |xr,x| examine Register

The value of this function is the contents of the memory 
location symbolized in the current "X" base by "x".

176 - |wx| Write "X” displacement
The value of this function is equal to the alqebraic 
difference between the initial value "X" of the display 
pointer position and the sum of any subsequent incremental 
displacement values.

177 - |wy| Write "Y" displacement

The value of this function is equal to the algebraic 
difference between the initial value "Y" of the display 
pointer position and the sum of any subsequent incremental 
displacement values.

121 - |xrp,x| examine Register Pair
Ihe value of this function is the combined contents of the 
two memory locations, whose first location is symbolized in 
the current "X" base by "x".

120 - |xw,xl,x2| experimental Write in reg.
Use of this function causes writing the value "xl" into the 
memory location ”x2"; both of these are in the current "X" 
base.

Page 32 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Number 21



122 - |xwp,xl,x2| experimental Write reg. Pair reveals the version number of the "romable object code".
Use of this function causes writing of the double word data 
symbolized in the "X" base by "xl" in the memory location 
whose first word is identified by "x2".

126 - lyt,t,s,vt,vfI Ys There
Hi is function searches the text whose name is denoted by 
"t” for an exact match with the string symbolized by "s"; 
if such a match is found, then the value of the expression 
is that string symbolized by "vt", else it is that string 
symbolized by "vf".

a. Romable program loads at "h8000.

b. "Once Only" start at “h8000 
initializes variables.

2
Memory

utilization
c. Restarts may be made at 8003 or 0.

d. System and user variables start at *h400

e. Workspace is above ~h600.

182 - |zd,r,v-,v0,v+| "Z" reg. Decrement and branch
Execution of this function causes the contents of a special 
register identified by "r" to be decreased by a count of 
one.; if the resulting contents of that register are 
greater than zero, then the expression value is that string 
symbolized by "v+"; if equal to zero, then the value is 
symbolized by "vO", and if less than zero the value becomes 
the string symbolized by "v-".

183 - |zi,r,v-,v0,v+| "Z" reg. Increment and branch
The action of this function is identical to that described 
for "zd", except that the designated register "r" is 
increased by a count of one prior to testing.

184 - I zq, r I "Z" reg. Query
The value of this function is the current contents of the 
special register designated by "r"; execution of this 
function does not cause any change in said register.

185 - |zs,r,n| "Z" reg. Set
Itiis function is used to preset designated special register 
"r" to the number symbolized by "n".

I/O specifications, and user options:
a. APPLE/ZAPPLE I/O Conventions apply.
b. Normally initialized to seek and take 
available RAM.

II II
11 System 11
11 Differences 11
II II

c. Special use of control codes is as follows:

“C Return to Monitor
“X Cancel current material typed in
DEL Rubout (changeable by user)
~N Shift Out to alternate character set
“0 Shift In back to regular character set.

The Line Feed key is viewed by SAM76 as being equivalent to 
the "NULIN" code, as specified by ASCII; use of this key 
serves to go to the beginning of the next line - combining 
the functions of "Carriage Return and Line Feed". Ttie 
Carriage Return serves only to return to the beginning of 
the same line; this permits underlining &c.

Modifying SAM76 tables and options:
There are two levels of modifications 
which the user may apply in the process 
of tailoring the SAM76 code to suit his 
system and needs:

II
II 4
11 Fiddler's 
11 Guide

a. Permanent.

SAM 76 — Setting up the System

There are two versions available: II II
IlAvailability I I 
IJ_____________ LI

a. Z80 - little less than 8K
Uses RSTO thru RST6

b. 8080 - about 9 K
Does not use any RST locations

In addition the source code is available from a number of 
ACNJ members if special adressing reauirements are 
encountered or if it is desired to configurate a system 
with fewer functions, or different use of the RST 
locations.

Except as indicated above both versions are virtually 
identical, and the information that follows applies to both 
of these versions; in consequence user defined texts and 
procedures may be successfully moved between systems using 
either of these two versions.
Possible incompatibility may be ascertained through use of 
the SAM76 function which reveals the version number thus:

t r - ....................— -
(} %@@n/=21
{}

b. Local or temporary.
The type of changes are identical but the location of the 
table to be changed and the time at which the table is to 
be changed are different.

Effectively there is a main table of variables and options 
located in the "romable" or protected section of code; 
after having executed a "GO" to ~h8000 this table is copied 
into the user work space starting at location "'h40C.
After this initial entry at "h8000 entry should be made 
only at ~h8003 or at location 0 if the user wishes to 
preserve any changes made in the duplicate table at 'h40C 
either with monitor facilities or through the execution of 
SAM76 functions which are available to establish a variety 
of user options.

5
Useful
Fiddles

Typical Permanent Changes:
Normally changes in the table at ~h800C 
should be limited to necessary
respecification of I/O adresses, and in _____________
some special cases to the location of
the beginning and or end of the user work space.
In addition the user may make permanent changes to such 
parameters as the maximum length of line, and the 
specification of the number of fill characters after each 
"carriage return/line feed". (Note Line Feed is the proper 
character used for this combined function).

Number 21 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 33

43



Table 1 lists the primary portion of the table at "h800C 
with corresponding adresses of its duplicate at "h40C.

Caution should be exercised in changing 0P2 and TOPMAX so 
that TOPMAX be greater than OR2 by at least "h400 bytes.

Table 2 lists locations that may be of interest to the user 
as candidates for permanent changes; since these locations 
may all be changed within the framework of the SAM76 
language, it is suggested that changes be made first in 
that manner, and that the modified duplicate table at ~h40C 
be examined before making the desired changes in the 
permanent table.

i t  r i
I| TABLE 2 (is continuation of TABLE 1) II

TIR: .BLKW 1 i o
11 II TO: .BLKW 1 ; TCO
II TABLE 1 1 1 Tl: .BLKW 1 ; TCI
11 II TT: .BLKW 1 ; TCT

TO: .BLKW 1 ; TCR
TE: .BLKW 1 ; TIH
RIX: .BLKB 1 ; N12

.SBTTL /Variables & once only code/ BIX: .BLKB 1 ; N10

.PAGE MCH: .BLKB 1 ; "=" EQUAL
; [VAR1] TCE: .BLKW 1 ; FNP1
VAR1: • BLKB 1 [80/4-0C] JMP CE: .BLKW 1 ; SCE
BOOT: .BLKW 1 [80/4-0D] Monitor Exit TW2: .BLKW 1 ; 0
MSCI: .BLKB 3 [80/4-10] Console Input TC3: .BLKW l ; 0
MSRI: .BLKB 3 [80/4-13] Channel 2 Input TCECT: .BLKW l ; o
MSCO: • BLKB 3 [80/4-16] Console Output TCEAN: .BLKB l ; o
MSPO: • BLKB 3 [80/4-19] Channel 2 Output RUBOT: .BLKB 1 ; N177
MSLO: • BLKB 3 [80/4—1C] Channel 3 Output RUBOl: .BLKB 1 ; N74
MSCSTS: .BLKB 3 [80/4—IF] Console Status RUB02: .BLKB 1 ; N76
MSCHK: • BLKB 3 [80/4-22] IO Check NULCH: .BLKB 1; null character
MSSET: .BLKB 3 [80/4-25] IO Set NULCT: .BLKB 1; filler count
MSMCK: .BLKB 3 [80/4-28] Memory Check PLIN: .BLKB 1; line length

$232: .BLKB 3 [80/4-2B] %sy,xl,x2,.../
$231: .BLKB 3 [80/4-2E] %sw,x0,.../ Notes regarding changes in Table 2:

.BLKB 3 [80/4-31] spare
t a. PLIN contains the number of characters on a linQ at
I which SAM76 is required to automatically generate a
OR2: .BLKW 1 [80/4-33] start active zone "NULINE" on the console device. This is usually initialized
TOPMAX: .BLKW 1 [80/4-35] text area limit in the permanent table at 72 decimal (~h48), and is changed
TOPLOC: .BLKW 1 [80/4-37] future3 in the duplicate table by using the "ell - Change Line
SPARE4: .BLKW 1 [80/4-39] future4 Length" function thus:

Notes with reference to Table 1:
T T - - - - - - - - - - - - - - - - - -
{} %cll,64/= 
{}

a. The adresses indicated are those of the actual locations 
which would be changed as required to suit individual 
operating system requirements.

b. If it is desired to disable any of the monitor functions 
which would be adressed via the vectors of Table 1, replace 
the JMP with a RET - (for instance one might wish to 
disable the automatic RAM grabber by putting a "RET" at 
~h8027" - If this is done it becomes necessary to actually 
stipulate the adress of the end of user workspace by 
entering said adress at ~h8037).

c. $232, and $231 are locations of jump vectors for the
SAM76 functions "sy" and "sw" respectively. These are 
intended for user applications; if not required it is wise 
to change the adresses for these functions at "h802B and 
"h802E respectively to the adress found at "h8031 - this
causes the message <nav-xxx> to be returned should these 
two functions be tested.
d. Location labelled "TOPMAX" is usually shown as 00-00; 
this in combination with the availability of the MEMCHECK 
function of the ZAPPLE monitor triggers the automatic 
determination of the upper limit of user work space. A non 
zero value at that location takes precedence and serves to 
restrict the user work space to that specified.

e. Location labelled "OR2" defines the beginning of the 
user work space; this may be changed if the user wishes to 
have clear space for his own purposes at it's normally 
initialized value of 05FE.

would set line length at decimal 64; the permanent table 
may be changed prior to being placed into protected memory 
using the neutral form of this function.
b. NULCT, and NULCH locations are used to specify the 
number and the type of "null" character the user wishes to 
have automatically generated on the console device when a 
"NULIN" is output to it. This is usually initialized at 
zero count, and ASCII-0 for the character; to change this 
requires the use of the "cfc - Change Fill Character" 
function thus:

T T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
{} %cfc,*,4/=
{}

puts 4 asterisks at beginning of each new line; the neutral 
form of the function is used to change the permanent table.

c. RUBOT, RUBOl, and RUB02 are used to specify the 
character to be used for character deletion purposes, and 
the symbols that are desired to surround the string of 
consecutively deleted characters; initially this is set to 
be the ASCII - DEL code and the surrounding symbols are the
< and > brackets. Changing this makes use of the "cro - 
Change Rub Out" function thus:

T T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
{} %cro,$AB/=
U

Page 34 Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Number 21



sets $ to be the deleting character and the deleted string 
is bracketed by A a n d  B; the neutral form of this function 
may be used to change the permanent table.
d. MCH is the location of the character used to terminate 
entry; this character is known as the "Activator".
Initially this is set to be the = sign, and is changed via 
use of the "ca - Change Activator" function thus:

T T . . . . . . . . . . . . . . . . . . . . . . . . . . . .
{} %ca.Z/=
U

changes activator to be "Z"; use the neutral form to change 
the permanent table.
e. RIX and BIX are the current specifications for the 
arithmetic and logical or binary bases respectively. These 
locations are initialized to provide base 10 for arithmetic 
and base 16 or hex for logical functions. Within the 
framework of SAM76 they are changed using the "cnb - Change 
Number Base" and "cxb - Change X Base" functions; for 
example:

T T - - - - - - - - - - - - - - - - - - - - -
{) %cnb,7/=
{}

sets arithmetic base to be 7.

TT------ -------
{} %cxb,8/=
U_

sets logical or binary base to octal.
The neutral form of these functions may be used to change 
the permanent initialization table.

e. Three types of anomalies are flagged by output to the 
console:

T Time out no tape or jammed tape
M Memory error
P Parity error in block

f. For the afficionado format is described below:
16 Bytes ~h80 or ~o200
SOH "hi
DEL *hFF or “o377
1 byte Number of data bytes (0 means 256)
2 bytes Load adress (Low then High)
variable data bytes
2 bytes Check Sum

I T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Tl
I I LOADIT - loader 11
I I _______________ II

• RADIX 8 ; added by editor

.TITLE /loadit/
•LOC 002000 "hlOOO

I I SAM76 - Loading the object code tape

ZAPMON= 1
ZAPPLE= 170000 “hFOOO
SENSE* 377 ; "hFF

;Control Codes
0CDLE= 20 Data Link Escape
CCENQ= 5 Enquiry
CCEM= 31 End Message
CCSOH= 1 Start of Header
CCETB= 27 End of Tx Block
CCACK= 6 Acknowledge
CCNAK= 25 Neg. Acknowledge
CCSTX= 2 Start Text

The two versions are available in compressed binary form 
for which a special loader is required; this loader is 
usually to be found in normal hex loader format ahead of 
the binary.

Hie normal procedure to load is as follows:
a. Load the hex formatted loader;
b. Hie loader should be at "hlOOO to “h475; simply go to 
“hlOOO if using APPLE/ZAPPLE monitors, otherwise change the 
calls to F006 to reflect your own reader input routine 
before running.
c. If using APPLE/ZAPPLE just do a G8000 to start SAM76, 
otherwise make the appropriate changes as required with 
reference to Table 1 first.
If you are using a machine with output lights at port FF, 
then the progress of loading will be displayed. As each 
block is successfully loaded a check sum will appear for a 
few seconds then the adress of the new block being loaded 
will be displayed. If the check sum remains, an error is 
indicated and then it is necessary to stop the reader, back 
up the tape to the beginning of the previous block, start 
the reader and G400 again.
d. Test SAM76 by getting a list of available built in 
functions by typing in the following:

&@@f, /=

.DEFINE SKIP2[R]-
[.BYTE 001![[[R]&6]<3])

GETLDR: CALL GETBY
CPI CCSOH
JZ SOHFND

GETLDX: CPI CCETB
JZ RSEXIT
CPI 170
JNZ GETLDR
CALL GETAD
PCHL ;all done

SOHFND: CALL GETCY
CPI 377
JNZ GETLDX

LDR377: CALL GETBY
MOV C,A
MVI E,0
MOV D,E
CALL GETAD

LOAD: CALL GETBY

RCVOK: MOV M,A
MOV B,M
CMP B
JNZ MEMERR
I NX H
DCR C
JNZ LOAD

Number 21 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94 025  Page 35

45



CALL PARTST
JMP GETLDR

NIXNIX: MVI C,"?"
SKIP2 D

MEMERR: MVI C,"M"
SKIP2 D

PARERR: MVI C,"P"
SKIP2 D

TIMERR: MVI C,"T"
EREXIT: CALL CO
RSEXIT: JMP RESTART

GETAD: CALL GETBY
MOV L,A
CALL GETBY
MOV H,A
CKA
OUT SENSE
RET

GETBY: CALL RI
JC TIMERR
PUSH PSW
ADD E
MOV E,A
JNC GETBYR
INR D

GETBYR: POP PSW
RET

PARTST: PUSH D
CALL GETAD
POP D
MOV A,II
CMP D
RNZ
MOV A,L
CMP 'E
RET

•END ;Pseudo op added by editor

Quick Reference Information for the ] j 
______  SAM 76 Language_______________jj

II I I An attempt was made, in the selection of
I I Mnemonics |I the mnemonics of the resident functions,
II I I to be consistent in the use and meaning

of words or terms represented by the 
function names; generally, whenever reasonable, letters 
used in the function names may be expanded as follows:

:er position 1 positions 2 and/or 3
a alphabetic all activator
b bring branch base
c change character c3
d define decimal divider
e erase element e3
f fetch file field, function
g gi greater g3
h how many h2 h3
i input, if identical initialize
j jl jump j3
k kl k2 k3
1 list left length
m ml match mode
n neutral number n3
0 output o2 o3
P partition P2 P3
q query g2 q3r return right register
s set, select string space
t trace text t3
u update, user u2 u3
V view v2 v3
w write warning work
X experimental "X" number base x3
y yi y2 y3
z Zpecial z2 z3

In the above table only the more frequently or major terms 
are indicated; positions marked with a letter number pair 
are for possible reference.

It should be noted that the meaning of the words used in 
the above table are consistent; that is to say that the 
same connotation may be applied - for instance "text" 
always means; "a named string of symbols to be found in the 
text area".

I I Quick reference resident function list

238 - I@f,s0| wh@ are Functions
239 - l@n| wh@ is processor ser. Number
237 - leti wh@ is processor Title
159 - Iab,sl,s2,vt,vf1 Alphabetic Branch
128 - Iad,nl,n2,n3,...,n| Add
160 - |ai,s0,sl,s2,...,sl Alphabetic Insertion
187 - Iand,xl,x2| And the bits
161 - Ias,s0,sl,s2,...,s| Alphabetic Sort
220 - |bf,f,vz| Bring File
113 - lea,s| Change Activator (current)

\ca,s\ Change Activator (initial)
195 - |cfc,dl,sl Change Fill Character schema

\cfc,dl,s\ Change Fill Char, (initial)
193 - |cin,tl,dl,...,t,d1 Change Id Number
148 - 1cld,tI Characters Left of Divider
191 - 1ell,dI Change Line Length (active)

\cll,d\ Change Line Length (initial)
133 - |cnb,d| Change Number Base (active)

\cnb,d\ Change Number Base (initial)
Page 36 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Number 21



266 - Icpc,tl,dl,... ,t,d| Change Protection Class
147 - Icrd,t| Characters Right of Divider
203 - |cro,sll Change Rub Out char, schema

\cro,sl\ Change Rub Out (initial)
132 - Ict,tl,t2,t3,...,t| Combine Texts (superseding)

\ct,tl,t2,t3,. ..,t\ Combine Texts (save current)
250 - Icwc,sl| Change Warning Character

\cwc, ... \ Change Warn. Char, (initial)
261 - 1cws,dI Change Work Space

\cws,x\
171 - |cx,s0,s| Character to "X"
200 - lcxb,d| Change "X" Base (active)

\cxb,d\ Change "X" Base (initial)
259 - Ida,s0| Date
131 - Idi,nl,n2,vz| Divide
208 - ldq,sl Define Quote

- |dr,t,a,o,v| Define Relationship
164 - lds,d,s| Duplicate String
103 - |dt,t,s,dl,d2| Define Text (superseding)

\dt,t,s,dl,d2\ Define Text (save current)
173 - ldx,d,x| Decimal to "X"
206 - |ea,tl,t2,___ tl Erase All excepting
207 - |ed,t,dl,d2,vz 1 Extract "D" characters
224 - Ief,fl,f2... fl Erase Files
151 - Iep,t,pl,p2,.. .,pl Erase Partitions

- ler, ... I Express Relationship
104 - |et,tl,t2,...,tl Erase Text

\et,tl,t2,...,t\ Erase all occurences of Text
249 - |etb,s| Erase Trailing Blanks
112 - lex.f| Exit
226 - |fb,f,vt,vfI File Branch
137 - |fc,t,vzl Fetch Character
138 - |fdc,t,d,vz| Fetch "D" Characters
139 - |fde,t,d,vz| Fetch "D" Elements
140 - 1fdm,t,d,s,vz Fetch "D" Matches
141 - |fe,t,vz| Fetch Element
142 - |ff,t,d,vz| Fetch Field
143 - |fl,t,s,vz| Fetch Left match
145 - |fp,t,xl,...,x 1 Fetch Partition
144 - |fr,t,s,vz| Fetch Right match106 - 1ft,t,sl,s2,.. . ,s| Fetch Text
210 - |ftb,t,s,vz| Fetch To Break character
211 - 1fts,t,s,vzI Fetch To Span character
212 - |hc,s| How many Characters
150 - |hm,t,s| How many Matches
149 - |hp,t,dI How many Partitions
114 - |ht,t| Hide Text

\ht\ Hide all Texts
115 - licl Input Character
116 - 1id,dI Input "D" characters
153 - lidt,d| Input "D" Texts
136 - Iig,dl,d2,vt,vf1 If Greater
135 - |ii,sl,s2,vt,vf1 If Identical
117 - 1im,sl,s2,... s| Input to Match
102 - 1 is,dev I Input String
152 - litl Input Text
213 - 1iw,n| Input Wait

- 1 lef,dev| Load External Function
216 - 1 If,s0,dl,...,dl List Files

- llr, ... I List Relationship
105 - Ilt,s0,dl,d2, • • <d I List Texts
110 - lmc,d| Multi-partition Character
146 - |md,t,d| Move Divider to pos. "d"

\md,t,d\ Move Divider "d" increments
109 - Imt,t,sl,s2,. -,s| Multi-part Text all matches

\mt,t,sl,s2,. . ,s\ Multi-part Text next match
130 - |mu,nl,n2,vz| Multiply
111 - |ni,vt,vfI Neutral Implied
188 - |not,xl Not (complement) the bits
209 - Inu,sl,s2,__ si Null
246 - |oj,s,sl,d,s2 Output Justified lines
248 - |op,s,sl,d,s2 Output Paddded lines
186 - |or,xl,x2| Or the bits
101 - |os,sI Output String
154 - lot,tl,t2,... tl Output Texts
108 - Ipc,dI Partition Character
174 - Ipl,sl,s2,... s| Plot
162 - Ips,d,sl,s2| Pad String
107 - Ipt,t,sl,s2,. . ,sl Partition Text all matches

\pt,t,sl,s2,. . ,s\ Partition Text next match
196 - Iqfc,s0l Query Fill Character schema

194 - Ioin,s0,tl,t2,...,tl Query Id Number
197 - |qld,tl Query Left of Divider
192 - |all| Query Line Length
134 - |qnb| Query Number Base
202 - Iqofl Query Over Flow conditions
167 - lap.tl Query Partition
267 - |gpc,sO,tl,t2,...,tI Query Protection Class
198 - |qrd,t| Query Right of Divider
204 - |gro| Query Rub Out char, schema
205 - Iqtal Query Text Area used
251 - |qwc,a2,al,...,al Query Warning Characters
262 - Iqwsl Query Work Space

\aws\
201 - Iqxbl Ouery "X" Base
215 - Ira,d,sl,s2,s3,...,s| Return Argument
263 - Ircp,dl,d2,s| Return Character Picture
166 - Iri| Restart Initialized
245 - Irj,s,sl,d,s2| Return Justified lines
252 - |rn,n| Random Number
189 - |rot,d,x| Rotate the bits
247 - |rp,s,sl,d,s2| Return Padded lines
165 - |rr,slI Return to Restart
163 - |rs,s| Reverse String
228 - |saf,dev| Select All File function dev.158 - |sar| "Auto Return" on line feed\sar\ no Auto Return on line feed
260 - |sda,da,mo,yr| Set Date
199 - |sem,dev| Set "Echoplex" Mode active

\sem,dev\ "Echoplex" Mode inactive
222 - |sf,f,tl,t2,...,tl Store File
157 - |sfd,fun,dev| Specify Function Device
190 - |sh,d,x| Shift the bits
253 - |srn,n| Seed Random Number
258 - |sti,tl,t2,t3| Set Time
129 - |su,nl,n2,...,n| Subtract
231 - Isw,sl,s2,s3,...,s| Switches
232 - Isy,sl,s2,__,s| System functions
127 - |tb,t,vt,vf| Text Branch
257 - |ti,sl,s2l Time
125 - |tm,d| Trace Mode activated

\tm\ Trace Mode deactivated
124 - | tma I Trace Mode All activated

\tma\ Trace Mode All deactivated
168 - |tr,t,s| Trim
218 - |uf,f,tl,t2,...,tl Update File
169 - |ut,cc| User Trap active

\ut\ User Trap inactive
118 - Ivt,tl,t2,...,t| View Texts
181 - |wc,sl,s| Write Characters
175 - |wi,xnl,ynl| Write Initialize
179 - |wl| Width Left
178 - Iwrl Width Right
180 - |ws,xnl,ynl,...,xn,yn| Write Straight Lines
176 - |wx| Write "X" displacement
177 - Iwyl Write "Y" displacement
170 - ixc,xl,x2,...,xI "X" to Character
271 - |xcf,s,x| experimental Change Function
172 - I xd, x | "X" to Decimal
255 - |xi,port| experimental Input
123 - 1xj,xI experimental Jump
256 - |xo,x,port| experimental Output
270 - |xqf,s| experimental Query Function
119 - |xr,x| examine Register
121 - |xrp,x| examine Register Pair
120 - |xw,xl,x2| experimental Write in reg.
122 - |xwp,xl,x2| experimental Write reg. Pair
126 - |yt,t,s,vt,vf| Ys There
182 - |zd,r,v-,v0,v+| "Z" reg. Decrement and branch
183 - |zi,r,v-,v0,v+| "Z" reg. Increment and branch
184 - 1zq,rI "Z" reg. Query
185 - |zs,r,n| "Z" reg. Set

Editorial Note: Object tapes for the 8080 and Z -80  versions o f  
SAM  76 are available from  Computer Mart o f  New Jersey, 
501 Rt. 27, Iselin, N J 08830. Telephone: (201) 283-0600. 
Tentative price will be $6.00. Computer Mart o f  New Jersey 
will also be publishing a book containing all available docu
mentation on SAM  76. Available in early Spring, it will sell 
fo r  $9.95. - T R W

Number 21 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 37

47



11 
11 
11—

SAM 76 — Additional comments

Dear Jim:

I just got around to reading your issue 10, volime 2, and 
was pleased to see the article by Frits Van Der Wateren 
which describes an implementation of Strachey's GPI for the 
6 800-

I IThe first purpose of this letter is to
point out to tie relatively uninitiated | | GP1 - SAM76 |
that the SAM76 language, described in |J____________U
your first issue of volume 3 has its
roots in GR1, and that the structure and philosophy are
virtually identical between the two languages.

II I I The main difference between the two
I | Mimicking 11 languages is the scope of available
|J_[| resident functions, as well ascertain

features of SAM76 whuch enable precise 
user definition in the SAM76 language of functions which 
might also be defined in terms of assembly language 
instructions - in other words "exact mimicking capability".
This feature is important to permit portability or 
transferability of user programs or, as I prefer to call 
them, scripts. Should 9ome user script make use of a 
function not resident in some one else's SAM76 interpreter, 
it is relatively simple to create a user defined function 
identical in its functioning to the resident function 
originally used.

II I I A version of the SAM76 language coded for
| |SAM76 - 6800 j j the 6800 is in process of development by
IJ_____________Ll the "notorious" Wayne Loufbrow youngster;

it is expected that this version will be 
functionally identical to the 80 80/Z80 implementation, thus 
permitting absolute transferability of user scripts-

The second purpose of this letter is to 
respond to some queries from users as to 
the problem of formatting user script for 
appearance and legibility, and yet not 
cause these formatting characters to 
become part of the evaluation process.

II II
| | Addendum to | | 
j j SAM 76 | |
I I description | |
IJ______________Ll

Because of the celerity with which you published the 
description of the SAM76 language, I was not able to make 
the appropriate addition which responds to this problem;
this addition is described below, as it will appear 
forthcoming "SAM76 Language Handbook"

in the

The table under the heading "Quoting or Protection" on page 
20 should be ammended by the addition of the "IC" warning 
character as illustrated by the excerpt shown below.

SIERRA DIGITAL’S PDP8 X8 
CROSS ASSEMBLER SERIES

News Release Received: 77 Dec 30
Sierra Digital Systems has announced the addition of four new 

microprocessor cross-assemblers to its X8 cross-assembler series for the 
Digital Equipment Corporation PDP8 mincomputer. The X8 series 
cross-assemblers now cover the Z80, 1802, SC/MP and 8048 micro
processors in addition to the previous 6502, 6800, 8080, F8 and 2650 
version.

By using an X8 series cross-assembler, assembly language programs 
are converted into object code which may be loaded into a microproces
sor system, or put into ROM of PROM memory. X8 cross-assemblers 
feature a Universal Assembler Format of common assembler directives 
and techniques. This standardization of features combined with a 
quantity discount schedule makes the series especially attractive to 
users of more than one microprocessor type. New special package offers 
at very substantial discounts are available to Educational Institutions 
for microprocessor course development.

Sierra Digital's X8 cross-assemblers run in 8K words of memory 
under the OS/8 operating system. The X8 assemblers are written in 
PDP8 assembly language to provide very fast operation and minimum 
memory requirements. Pseudo-ops and runtime options provide for 
conditional assembly and extensive listing control. Generated object 
code may be output in the microprocessor's standard loader format, or 
BNPF for ROM generation.

Each cross-assembler is priced at $400 and distributed in PDP8 
binary format on paper tape, Dectape, or Dec floppy diskette. Source 
files are also available for an additional $250. Sierra Digital Systems 
is located at 13905 Rancheros Drive, Reno, Nevada 89511, 
(702) 329-9548.

II "" II
Ignoring || 

| | next character | | 
l l ______________ il

Oftentimes the user wishes to arrange 
his script for convenient legibility 
using "nulin", "tabs" or other 
characters; this is strictly for 
formatting purposes. Under normal 

circunstances these characters will be part of the 
expressions, and be returned in the value string unless 
deleted in the scanner.
One vay of achieving this is to place the® characters in 
unused arguments of primitives such as the third argument of 
an "os" expression. This could be a problem if at some later 
time the additional unused arguments acquire a purpose-
Under initialized conditions the """ character is used to 
signify that the immediately next ensuing character is to be 
deleted in the scanner.

I I

l l -

IIFinal |j 
erra tin 11
__________Ll

Another bright youngster, Karl Nicholas, 
pointed out to me that expression "k" 
under < skim > on page 23 was
unnecessarily complicated, and suggested 
the following simplification which after 
being checked out shoved the correctness of hi s observation
< k >
%pt,,[l)/%i/![l]/

AS
QC
IC

77 Argument separator
100 Quote single character
140 Ignore single character

The following specification for this warning character 
should be concatenated, with scissors and glue, at the end 
of the SAM76 language description just ahead of the birds on 
page 22 of your magazine-

II II
I | Closing 11
I I caiments I |
I I __________ Ll

Plaudits and bouquets to your staff who 
did a great job of laying out in an 
esthetic and artistic manner the rather 
complicated material you received from 
me-

I hope that the growing body of users of the SAM76 language 
will contribute algorithms and scripts to your pages, and in 
that manner provide an escape from the "basic" syndrome.
Cordially,
Ancelme Roichel

Page 46

148

Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Number 23



SAM76 Language Update i !

Ii Source Code 11 
I|Availablllty ||
I J ______________________ L l

The current position with respect to 
availability of the source code Is very 
simple: It Is available Is machine 
readable form under the following 
conditions:

1. - A relatively complex test must be passed with flying 
honors to demonstrate the requestor's understanding of both 
the language philosophy and pragmatics; one of the ten test 
problems might be:

"WrUe a procedure named "FETCH" 
completely mimics the "FT" function".

that precisely and

2. - The requestor must demonstrate skill and knowledge with 
respect to assembly language programming as it relates to 
the version of the source code desired; if the source code 
is desired as a model for Implementation In a new machine 
then skill in the target machine must be demonstrated - team 
work Is encouraged in this Instance.

3. - The requestor must be prepared to agree to contribute 
free time towards the advancement of the language; this can 
be in a number of ways including improving the efficiency of 
existing source code, publishing algorithms and examples, 
giving talks to school and other educational groups &c.

4. - The requestor must agree to make available for 
publication at no charge any programs written either for 
other machines, or as additions to the source version 
requested. This does not, however, Include any application 
programs, normally referred to as scripts or procedures 
written in the SAM76 language itself.

The foregoing requirements are an attempt at preserving the 
current integrity and portability of the language until 
enough Implementations have been made that a "DE FACTO" 
standard is established; the benefits to users of such a 
position should be obvious.

TlThrough an oversight all of the 1/0 calls 
were not made through the vector table 
created at *h400 In early versions of the 
object code distributed at San Jose; this 
anomaly was brought to our attention the 
second day of the WEST COAST FAIRS, and the changes listed 
below will correct the problem for users with other than 
"ZAPPLE" monitors:

II I /D Vector 11 
11 Patch 11
I J ______________________ L l

Version location 
zee 80C6 & 8116

811F & 81CD 
8080 80E? & 813B

8144 & S1F7

from 
CD 15 F0 
CD 18 F0 
CD 15 F0 
CD 18 F0

to
CD 21 04 
CD 24 04 
CD 21 04 
CD 24 04

I T

Location of 
object code

T l

II
II

The normal location for the interpreter 
object code was assembled to start at 
“h8000; this was a compromise selection

______________  due to the desire to have all of the user
work space in one continuous area 

starting at 0 for the Z80, and “h400 for the 8080; the idea 
was to permit saving the user work space as an executable 
load module that would be portable from machine to machine, 
regardless of the location of the object code itself (be it 
below or above *h8000).

Since then It has become painfully obvious that such hope 
could not be realized with regard to the POLYMORPHIC and 
HEATHIIT systems; consequently changes have been made in the 
object code to normalize certain pointers at the time the 
"EX" Exit function Is executed, and restores these same 
pointers as appropriate to the machine in which the uVtd 
user work space might be reloaded.

version 
< 0022>

II
II

- L l

Active and neutral execution of the a»I" 
function reveals the creation date and
version number respectively; versions
<0022' with a date equal to or greater 
than 14CC have been modified as required 

to permit portability of the actual work space. The creation 
date code may be decoded using the following procedure:

< date*
fed,l,feu,%id,^n//,**u,31,*dl,*id,®®n//,3l////' 
m<ad,l,fau,<di,*xdf«»n//t3l/,* 
fcu,ttl,<di,%xd,<@®n//,31/, 12/, 12///'
11 ] f e d , 1964, <d 1, ltd 1, %xd, ©On//, 31/, 12//

Note that scripts output with the "OT" output text function, 
are not in question and that the new version is only
required if the user desires to move his work space to
machines where that space does not start at *h400.

This function was added to delineate the 
limits of the user work space; it may be 
used at any time, but generally prior to 
executing the "EX" exit function; formal 
definition follows:

II Tl
11 New function 11 
11 "IQS" 11
I J ______________________ L l

272 |xqs,s0| X Query Save

The value of this function are two numbers, each preceded by 
the string "s0" representing in the normal number base of 
the machine the starting and ending adresses of the user 
work space that should be saved.

Normally the "cws" change work space function would be first 
executed to reduce the work space to a minimum size, then 
the "xqs" function executed to ascertain the limits of the 
required save, prior to doing an "exit".

Version <0022> 14CC corrects the non 
functioning of the "XI" experimental 
Input in the 8080 versions of the SAH76 
language processor. The following shows 
the changes that can be made in early 
versions to correct this problem:

ll------------------
11 failure of 
II "XI" 
j | in 8080 code

Early version coding: 

XI:

Corrected coding:

MVI A,KINP XI: MVI A.KINP
STA CHA1 STA CHA1
MVI A.KKET CALL MSXX
STA CHA1+2 MOV L,A
CALL MSXX MVI H.KRET
STA CHA 1+1 SHLD CHA 1+1
CALL CHA1 CALL CHA1
JMP MSXRB MOV C,A

JMP MSXRB
NOP

CHAU 04DE | KRET: C9 | KINP = DB
XI, MSXX, and MSXRB locations may vary between versions.

"CFC"
superfluous
argument

It was pointed out that the "cfc" change 
fill character funtion did not function 
as defined - requiring an extra argument; 
this may be readily corrected by 
replacing with NOP the call to the 
subroutine that moves the argument

pointer in the expression being evaluated:

CFC: MVI A.NULCT-TIR
CALL STORNO
USAS ; replace In
DCX H
CALL MSR9
MOV M,A
IJRQ

; 3E IE

In the Z80 version IJSAS is an RST2, in the 8080 version 
IJSAS is assembled as a CALL to MSAS; the locations of CFC, 
STORNO, MSAS, and MSR9 may vary between versions.

Page 4 6 D r .  D o b b 's  J o u rn a l o f  C o m p u te r  C a lis th e n ic s  &  O r th o d o n t ia ,  B o x  E , M e n lo  P a rk , C A  9 4 0 2 5 N u m b e r  2 6

285



SAM76 language afficlonadoes might like II II
to receive advance copies of material I i <PREPRIHTS> 11
scheduled for publication. At this tine |J____________Ll
it is suggested that those people wishing 
to receive preprints may send to SAN76 a self addressed 
envelope containing one dollar; this dollar will he replaced 
with preprints as available and the envelope mailed - then 
to continue if so desired ^PREPRINTS/.

An object code version tailored to the POLYMORPHIC should be 
available by the time this is published. The price is $6.00 
postpaid for this as well as for version <0022». The 190 
page textbook is priced at $12, and a system loader 
Information booklet is $2; all of these are postpaid. 
Specify loose-leaf or bound preference for the text book.

SAM76 Inc., Box 257, R.R.l, Pennington, N.J., 08634

THIS IS SIRIUS

News Release Received: 78 April 13
Sirius II comes complete, using a unique combination of 

two micro processors, the Mostek Z80 (for main computa
tions), and a Fairchild 3870, that handles all keyboard and TV 
interface overhead. Also included are 32,768 characters of 
read/write memory, RS-232 interface for I/O, 8,192 charac
ter PROM board with 1,000 character monitor supplied, mini
floppy disc drive, a 64 key keyboard with alpha/numeric and 
graphic capabilities, and TV interface. Other features included 
are a full disc operating basic interpreter, monitor and soft
ware programs (ranging from home management, personal 
finance, educational learning programs, process control, to 
games and more games). The Sirius II is also capable of run
ning the full complement of business software that its big 
brother (Sirius IV) runs.

Presently available hardware includes additional RS-232 
I/O, additional parallel I/O, add-on 16,384 BYTE RAM cards, 
A/D-D/A converters, and additional mini-floppy disc drives.

The Sirius II is manufactured by Digital Sport Systems, 
and has a suggested retail price of $1,850. Contact Digital 
Sport Systems, 7th and Elm Streets, West Liberty, Iowa 
52776;(319) 627-4211.

A BELL FOR YOUR SWTPC TERMINAL

Dear Sir: Received: 78 Feb 5
Enclosed is a circuit for adding a “bell” function to a 

SWTPC CT-1024 terminal. The circuit consistss of a 556 (dual 
555) timer IC, four resistors, five capacitors, and a speaker. I 
built the entire circuit on the 14-pin Wire-wrap socket that 
the 556 is plugged into. The bell is triggered from an unused 
output pin of the 7445 decoder on the computer controlled 
cursor board in the CT -1024.

The left portion of the circuit is a one-shot with a duration 
of about Vi second. The right portion is an astable oscillator 
with a frequency of about lKhz. The output of the one-shot 
is connected to the reset of the astable. When the one-shot is 
triggered by a low-going pulse from the 7445 decoder on the 
cursor board, its output goes high for Vi second. This high 
pulse allows the astable to oscillate at lKhz for xh  second. The 
IK resistor at the trigger for the one-shot is required to pull- 
up the output of the open-collector 7445. The astable is 
coupled to the speaker through a 10 mfd. capacitor. The 
circuit I built plugs in “piggy-back” onto another 14-pin 
IC (with Vcc= 14, Gnd=7). The cost is less than $4.00.

Sincerely, 
Stuart Brown 128% Taber St.

Ft. Wayne, IN 46803

.  O VGC

, IOOK<H J

TO744b
ON

CURSOR
BOARD

14
556

'/2
5~fe

T TT-Ol

TIME-SHARE FOR NORTH STAR

News Release Received: 78 April 6
A Time-Share Disk BASIC System is now available for 

users of the North Star Floppy Disk System. Designed to oper
ate with either 8080 or Z-80 processors, NORTHSHAREtm 
provides up to four independent users with selectable memory 
partitions and buffered terminal outputs.

Minimum memory requirements for operation are 24K 
bytes. There are no special hardware requirements outside of 
additional terminals and I/O ports to support the multiple 
users.

System includes one Diskette and Release 3 North Star 
Basic and DOS with NORTHSHAREtm Supervisor and Docu
mentation Package. Price is $48. Byte Shop of Westminster, 
14300 Beach Blvd., Westminster, CA 92683; (714) 894-9131.

N u m b e r  2 6

286
D r . D o b b 's  J o u rn a l o f  C o m p u te r  C a lis th e n ic s  &  O r th o d o n t ia ,  B o x  E , M e n lo  P a rk , C A  9 4 0 2 5 Page 4 7



S A M  7 6  L a n g u a g e  U p d a t e  

N o . 3 - J u l y  1 9 7 8

BY ANCELME ROICHEL

This new version Is upward compatible 
with previous versions and. Is the result 
of user requests for Beans to facilitate 
access to major pointers. In addition 
linking of user programs to the processor 

Is slapllfled; provisions are made for up to four overlay 
zones defined by the user. These enhancements were made 
without, however, Increasing the size of the processor. The 
new functions are defined below:

- |9cn,current,new I Change function Name

This function allows user to rename any of the resident 
function "current" names to any desired "new" name; these
new names must consist of two or three alphabetic
characters; In changing naaes the user should be
particularly careful In his command sequence. At this time 
"os" and "Is" should not be changed.

Iqlol Query current 10 assignments

The value of this function is in the current 
value of "IQBTTE" as defined by the monitor - 
facility is provided.

*1" base the
if such a

• lslo,lobyte| Set 10 assignment

This null valued function is used to reassign the monitor 
"IOBTTE" if provided for. It should be noted that a "cold" 
start entry into the processor carries with it the current 
monitor assignment; if this function is used then a "control 
C" or "ex" exit causes restoration back to the original 
assignment. A "warm" reentry, or a "hot" continue causes 
reassignment to the setting In force at the time of exit.

Ixll,S0| Xamlne Label list

The value of this function is a list of internal system 
labels available for examination by name; these labels may 
be actual values, identify locations of program entry points 
or tables, or give addresses of memory locations in which 
system pointers say be found. Each label name is preceded by 
the string symbolized by "s0". (Label names and their 
purpose will be described later).

- Iial,label,offset 1 Xamlne Address of Label

The value of this function Is the value of the "label" to 
which the value of the "offset" Is added. Both the value 
returned and the "offset" are in the current "X" base.

- |nud,function,arguments I lull Display mode

The "nod" function serves to modify the scanner to the end 
that Instead of a value being returned by the function whose 
name is symbolized by "function" (with its appropriate 
arguments), output of what would have been the value is sent 
to the currently assigned "console" device.

The exit function in version <0023> has 
been enhanced to automatically reduce the 
work space to a suitable minimum prior to 
returning to the operating system.
Reentry automatically restores the work 
space to its maximum allowable size. Next enhancement will 
be to implement the passing of a file name and other 
information back to the operating system.

II Tl
11 "ex" 11 
I Exit function!|
IJ_____________ Ll

This function has now been enhanced 
so that execution of %cws/ without 
arguments serves to reduce the work 
space to a suitable minimum.

The neutral form of this function may be | | f l  
used to "re-speclfy" size of inter record || "ot" 
gaps and length of leader and trailer; 11 Output Text 11 
the two forms of this function are: IJ_____________ Ll

%ot,nl,n2,...,nN/= which serves to "output texts” whose 
names are symbolized by "nl", "n2", "ns"; the overall output 
is bounded by 64 bytes of leader, and Individual texts are 
separated by 16 bytes of gap.

&ot,leader,gap,nl,n2,...,nN/= first resets the 
specifications for leader and gaps to the new desired 
decimal values symbolized by “leader" and "gap", and then 
outputs the texts in the normal manner.

ll Tl
I| Generalized structure - labels and points of interest |I
IJ__________________________________________________________Ll

The accompanying figure shows a typical arrangement of the 
user work space, as well as associated pointers and their 
names. This work space may be located either below or above 
the main system program, can be saved after having performed 
the "ex" exit function, and this saved file can be reloaded 
in another system with its workspace in a different area of 
the machine; a "hot" reentry permits the process terminated 
by the "ex" function to resume with the next and other 
subsequent unevaluated expressions.

Typical system labels as determined by |
the "xll" Xamlne Label List function are 
given below with their characterization. j

System
Labels

II
II

"AST*
"AST"
"ENC"
"MR"
"ESL"
"OPV"
"PQA"
"POB"
"POC"
"POD"
"PSE"
"PSW"
"PST"
"POL"
"PWA"
"TAE"
"TAH"
"TAL"
"TAM"

Address System subroutine Table 
Address System subroutine Vectors 
Entry Continue "hot start"
Entry Restart Level "warm start" 
Entry Subroutine Links 
Offset Permanent • Variable tables 
Pointer overlay A - "extra" 
Pointer overlay B - "disk"
Pointer overlay C - "plot"
Pointer overlay D - "user"
Pointer service entry 
Pointer function "SW"
Pointer function "ST"
Pointer user link table 
Pointer Work Area start 
Text area end 
Text area high 
Text area low 
Text area max

Details of the mechanism of linking the overlay areas to the 
system function table, and details of user application of 
system subroutines will be described in a later write up.

T l
Exercise for 11 

the adventurous | 
______  1 1

The inquisitive 
investigate the 
system by finding 
"ir", "xrp", 
functions. The 

found using the

person may begin to 
system subroutine 

the code for the 
"xw", and "xwp" 
entry point for 
xqf" function. Thefunctions can be 

function ends with either a "Jump" or "return" instruction. 
In the body of the code are some subroutine calls; the 
addresses called are also found in two other places: 
somewhere beyond the start of the table located at "AST" 
(said table locates some fifty of the system subroutines) 
and also somewhere - the same index distance (but modulo 
three) in the table created at address starting at "ASV".

The first table is used if an instruction in one of the two 
following forms Is encountered in a user program:

N u m b e r  3 0 D r .  D o b b 's  J o u rn a l o f  C o m p u te r  C a lis th e n ic s  &  O r th o d o n t ia ,  B o x  E , M e n lo  P a rk , C A  9 4 0 2 5 Page 1 9

444



RST 6
Index number

CALL ESL 
index number

Alternatively a "call" to the proper location In the table 
of Jump rectors which starts at "ASV" will achieve the same 
task.

In like Banner other subroutines may be identified through 
exploration of other functions.

The user may sake use of the "sw" and 
"sy" functions by storing at locations 
deteralned by %xal,PSW ,offset/ and
3txal,PSY, offset/, respectively, the
memory addresses which execution of these 
functions should reach. If the offset Is 0, then the 
temporary table address is given, lf the offset is that 
value returned by executing %xal,0PV/, then the permanent 
table address is given. The "irp" and "xwp" functions may be 
properly used to read and write In these locations.

The value of this function is the contents, in the current 
"X" base, of the identified sector. Each "byte" is preceded 
with the string symbolized by s0.

- Ixws,unit,track,sector,X| I Write Sector

This null valued function places the string symbolized by X
in the designated sector. If that string is greater than one
sector then only as much as will fit will be transferred.

T The "bf" bring file, and *uf" update
special | file functions operate as expected

11 feature of I when used with the active function

O
bf and uf | marker - namely: %bf.filename/, and

________________ L fa*.filename/. If the neutral form is
used then any file may be brought in 

regardless of its type (provided there Is room) and may be 
put back on disk. Care must be used In doing this since 
strange files will not have the necessary pointers to be 
compatible with the SAM76 processor. This Is a very 
effective means for moving files from disk to disk -
particularly on one disk drive systems.

For example:

&bf.xdlr.com/:

Now change diskettes

4uf.xdir.com/:
{nav-uf-aef}

Ho-hum an already existing file message - well no matter 

%ef.idlr.com/Stuf.xdlr.com/:

Anomaly
Indications il

Whenever a non fatal anomaly occurs 
during the execution of file 
functions, a value is returned by
these normally null valued functions. II II
These values are In the form:

{nav-functlon-anomaly)

In the above indication, the function being executed is
symbolized by "function", and the anomaly type may be one or
more of the following:

This overlay is nominally IK and provides at this time the 
following functions:

prim Id No Description

BF 220; Bring File
EF 224; Erase File
FB 226; File Branch
LF 216; List Files
QFA QFA; Query File Attributes
QFE QFE; Query File Extension
EF 243; Read File
SDU SDU; Select Directory Unit
SFE SFE; Select File Extension
UF 218; Update File
WF 244; Write File
XRS XRS; X Read Sector
XWS XWS; X Write Sector

Those functions which in the preceding table have a numeric 
"Id No" have been described previously in Doctor Dobbs as 
well as in the SAM76 language manual; the other functions 
are still In the experimental evaluation phase and are 
described below.

• |qfa,fllenaae,s0| Query File Attributes

The value of this function is a list of file characteristics 
derived from the disk operating system directory; each 
attribute is preceded by the string symbolized by "s0". One 
of the attributes is the file size expressed as a decimal 
number of 256 byte pages.

-  Idfel Query File Extension

The value of this function is the current setting of the 
file extension; note that there is a difference between 
"blanks" or "spaces" and "null" or zero.

- |sdu,d| Select Directory Unit

This null valued function allows the user to designate the 
Directory unit to be accessed by the various file functions; 
a Directory unit is any device which has a directory 
structure and could be cassette as well as disk.

- |sfe,extension| Select File Extension

This null valued function is used to preset a desired file 
extension so that the extension need not be used in any of 
the file functions. In effect this may be used as a 
classification means. The extension may be set to any 
desired three (or less) symbols. Including spaces and ???, 
or to the null string (viz: %sfe/) with varying effects.

- |xrs,unlt,track,sector,s0| X Bead Sector

This new enhanced version is available on I
paper tape or TDL cassette as follows for lAvallablllty II
a postpaid price of $8.00 -  ($2.00 credit J______________ Ll
will be given to original purchaser of 
earlier version returned with order); P0LT-88 version for 
8088 only on cassette $8.00; CPM version on standard 
diskette $15.00.

Addresses in table below are all In HEX.

"dsk" disk
Type AST VAR TAM START END

"nra" no room Z80 High 0100 0400 7FFF 8000 SFFF
"err" error 8080 High 0100 0400 7FFF 8000 A2TF
"fnf" file not found Z80 Low 0100 3400 FFFF 1000 2FFF
"dir" directory 8080 Low 0100 3400 FFFF 1000 33T
"clo" close 
"ext" extension

8080 Poly-88 4800 5000 FFFF 2000 43'F

"aef" already existing file 
"rud" reading unwritten data

Page 2 0 D r .  D o b b 's  J o u rn a l o f  C o m p u te r  C a lis th e n ic s  &  O r th o d o n t ia ,  B o x  E , M e n lo  P a rk , C A  9 4 0 2 5 N u m b e r  3 0

445



Notes: TAR : START - OPT; all version with AST at 0100 are 
CPM compatible; Z80 versions sake use of RST0 thru RST6 
while processor is running and restores RST0 on exit; 
TAM=FfTF is theoretical maximum reduced by size of operating 
systea used; CPM diskette contains low versions; the disk 
overlay is at C00, and other overlays are at 400 and 800; lt 
is possible in the CPM systea to run programs which are 
saaller than 2K without affecting the SAM76 processor.

Text book describing the language in simple teras is 
available for a price of $12 - postpaid. (Specify bound or 
loose leaf). Systea loader booklet appropriate to object 
code format Is $2.

T l  The source program for the disk 
I Source for CP/ft II functions as implemented In the CP/k 
I Disk functions II version will be published in Dr. Dobbs
IJ________________ Ll Journal, ' however copies may be

purchased for the implementation of 
the moment - no guarantee that lt will match the object code 
furnished - but to serve as a model for Implementation in 
other disk systems; price is $10.00 postpaid; available as 
xerox printed copy or in machine readable form on standard 
diskette or paper tape (TDL macro format].

SAM76 Inc., Box 257, R.R.l, Pennington, NJ., 06534

(cont’d from page 18)
Recently, PASCAL has been hailed as the “next” standard 

language.6 Besides the arguments above against standardiza
tion, I am not very impressed with PASCAL as a language. 
Some syntactic kluges have been pointed out already,7 but the 
main problem with PASCAL is that it is one of the class 
known as “ structured”  languages; a misnomer, as SNOBOL4, 
for example, has a much neater, more elegant, and simpler 
syntax. That PASCAL is structured means essentially that 
the programmer is limited with respect to the control structure 
that he can use. This makes the source code easier to under
stand and debug, but it restricts the programmer and may 
discourage creativity. The controversy over structured versus 
nonstructured languages that raged in Communications o f  
the ACM  and similar publications for several years seems now 
to be over, structured programming techniques having emerged 
victorious; but this does not mean that you, or I, or anyone 
else has to agree.

Rather than making PASCAL or some other single lan
guage a standard, what is needed is a total lack o f standards, 
allowing the programmer to choose which language to use 
for a given application based on the problem’s nature and his 
personal preference. Each microcomputer manufacturer 
could write one or several languages that had not yet been 
implemented for their processor. Transportability between 
machines could be provided by device-independent I/O: 
the user, or, better, the maker o f the user’s mainframe, would 
write a set of I/O subroutines for the user’s hardware configu
ration and I/O devices that would be called by the language 
interpreters and compilers, these being written with calls to 
user-provided routines only. Relocatability of code would 
be very helpful. Alternatively, the writer o f the language might 
spend the small amount o f extra work needed to  modify the 
basic program for use with a variety of common systems. 
Some software is already being offered this way.

Some obvious first choices for languages to implement 
on microcomputers are PASCAL, ALGOL, LISP or one of 
its many variants, SNOBOL4, RPG II, GRASS, SKETCHPAD, 
APL, MUMPS, C (anyone for MULTICS on a micro?), GPSS, 
SIMSCRIPT, and a TRAC*-like language.

A lack of a high-level programming language standard 
would not only give the user the benefit o f a wide variety of 
languages to choose among, it would also be to  the advantage 
of the computer makers: there is certainly more money in 
being the first to introduce a SNOBOL4 than in being the 
hundred and first to produce a BASIC.

References

I L
Typical System Layout

f t  C T / l / f -  A t e  A

?8oo * PWA

M I N I  MOM W O t l K i / Q A c Z

S A  M. /fV 
l b

I coo

S A  M\
r 1[ d s  tc] I i t

(Typ’>«0 r  
Ocoo '______

S a m

r 1(0 ^
O  V E K  L A Y  

(Typif* I  ̂
O d  OQ _______

POB

? 0 t

t > A M

[ p I t !

0400 (' r y p ,f*1  ̂ |  POP

SEcewpAfty'pisK eorFzii

(/*£» .<£ I w r .  V G i T c i l

. A —  
ReiJ i  f-uliteJ 

o r  te tn tvy

1

15"

II

1. S ee , fo r  ex am p le , M arc LeB run, " T ilt in g  a t  W in d m ills , Or, W hat's 
W rong w ith  B A SIC ,"  P e o p l e ' s  C o m p u t e r  C o m p a n y  vol. 2 no . 1 
(D ecem ber 1 9 7 2 ) p. 5.

2. Jo h n  M cC a llum , "T h e  A lta ir  (S -1 0 0 )  Bus F o rum : PCC 7 7 ,"  BY T E  
vo l. 3 no. 3 (M arch 1 9 7 8 ) pp. 1 4 8 -1 5 1 .

3 . R o b ert S u d in g , "W hy W a it?  B u ild  a F A ST  C assette  In te rface ,"  
B Y T E v o l. 1 no. 11 ( J u ly  1 9 7 6 ) p. 4 6 .

4 . G len A . T a y lo r , "L an g u ag e  D evelo pm en t: A P ro p o sa l,"  B Y T E  
v o .2  no . 11 (N ovem ber 1 977 ) pp . 1 9 0 -1 9 1 .

5 . P eter S k y e ,  "T h e  8 0 8 0  High Level L anguage P ro jec t o f P eter S k y e ,  
C o n tin u ed ,"  B Y T E  vol. 2  no. 5  (M ay 1 977 ) pp . 6 8 -7 0 .

6 . Carl H elm ers, " Is  P A SC A L  th e  N ext B A SIC ?" B Y T E  vol. 2  no. 12 
(D ecem ber 1 9 7 7 ) pp . 6 - 8  and  1 8 4 -1 8 5 .

7. Leigh Ja n e s , "R e ac tio n s  to  P revious C o m m en ts ,"  B Y T E  vol. 3 
no . 2  (F eb ru a ry  1 978 ) p. 159 .

♦Trademark of Rockford Research, Inc.

N u m b e r  3 0

446
D r . D o b b 's  J o u rn a l o f  C o m p u te r  C a lis th e n ic s  &  O r th o d o n t ia ,  B o x  E , M e n lo  P a rk , C A  9 4 0 2 5 Page 2 1


