
6
FORTH IMPLEMENTATION NOTES - ACE SYSTEMS

TONY HILL
RR #2

HAMILTON, ONTARIO
L8N 2Z7

As mentioned in the last issue of IPSO FACTO, FORTH for the 1802 is now
available and r.eady to go. In fact, ACE is now distributing copies for
essentially the distribution cost. This article is to tell you a very little
bit about FORTH, and to explain how to go about bringing it up on your system.
Further articles are planned, but for now this should be enough to get you up
and running.

FORTH is a programrning environment which encorporates both a language, a
compiler/interpreter, a "run time" package, an editor/assembler and an
operating system. The language is to BASIC as a four function calculator is
to a Hewlett-Packard programmable calculator. (This is actually a good
analogy as FORTH and the HP calculator both work in reverse polish notation
and can seem confusing until you cane to appreciate the elegance of the
system). FORTH is much faster than interpreted BASIC and offers a much
simpler interface with the "real" machine. It would be impossible to describe
FORTH in an article twice as long as this, so I think it will suffice to say
that it is an interesting language which tends to became addicting. In view
of the shortage of other good languages for the 1802, it becomes especially
attractive.

Having said that, it's time to explain how to get this "wonderful" language up
on your system. First of all, I should point out that there is a well
organized group of FORTH users called the Forth Interest Group (or FIG). They
have released "standard" FORTH implementations for a' large number of systems, a
inclUding most of the popUlar micros AND the 1802. I'll talk more about them ~
and the 1802 approved version in future articles. For now it is sufficient to
point out that they will sell you a general FORTH implementation manual and a
source listing for 1802 systems. You will need both if you intend to get into
FORTH seriously, but most especially the implementation manual. It lists the
exact definition of all FORTH programming words and is the basic reference for
FORTH systems. Note however that it does not teach you to program in FORTH,
and at this point I have not read enough of the available books on FORTH to
comment on a good bqsic learning text. The August 1980 issue of BYTE, which
was dedicated to FORTH, is not a bad place to start though.

So, to get started, order the implementation manual and the source listing (or
get photocopies fran a friend, a practice encouraged by FIG) and load the code
into your system. You can either type the whole 5-1/4 K in one byte at a
time, or buy PROM's or tape from the club and transfer it onto your system
that way. (See the end of this article for ordering information for all items
mentoned). Then you must customize the I/O to match your system. FIG code
includes some sample I/O routines but if you already have a monitor with your
own routines callable by SCRT, I would recommend using those. Assuming you
are going to do just that, here ~ s how to patch them in. Example code is given
for an 8k of RAM system.

FIG-FORTH code occupies memory from 005E to 153C in the basic version supplied
by FIG. The user customizes this by adding any initialization code required
for his system (usually in the space between 0000 and 005E) and some I/O
interface routines. A tested method of doing this is explained below. The
other customization required is to allocate RAM space for FORTH stacks and
buffers. Usually t.he top two pages of RAM are used for this. The 16 bit
addresses are then stored as follows:

MEMORY LOCATION ADDRESS OF - 7 FUNCTION EXAMPLE
006E/F Top RAM page USER variable area lFOO
0070/1 Top page - 1 Computation stack IEOO• 0072/3 Top byte of Return stack lEFF

top page - 1
0074/5 Half way up Terminal input buffer lEBO

top page - 1

INITIALIZATION CODE
Code to initialize SCRT registers, video cursor addresses, baud rates or any
system dependant functions can be installed in memory at addresses 0000 to
0050. FORTH actually starts at 005E and so the space below that address is
available to you. (Your initialization code should end with a BR 5E). The
initialization code should set R3 as the program counter and ACE systems
should also load the address of SCRT Call and Return routines into R4 and R5.
R2 can be set as the X register if you like, but FORTH will reset it for
itself. Note that FORTH itself does not use SCRT, R4 or R5. sample code is
provided at the end of this article.

I/O
There are four I/O routines that the user must supply. They are patched in by
storing the start address of each of the routines at the following locations-

MEMORY LOCATION
0543/4
0573/4
055E/F
056C/0

FUNCTION
character output routine
issue a carriage return
character input routine
test for break condition

8K EXAMPLE
1530
1550
1565
157C

~ The I/O routines are entered with R3 as the PC. All I/O routines end with a
SEP RC.

Code to interface to your monitor I/O routines maybe added starting at
location 1530. Change locations 007A/007B to the address of the next free byte
after the end of that code. Also store this value at 007C/0070. In the
example listing, this address would be 1585.

Registers 0,1,4,5,6,E,F are not used by FORTH and may be used as required.
FORTH uses R7 and R8 as temporary registers only and so they are available for
use as well. However on reentry into any I/O routine they may be changed from
what they were left as.

R2 is a FORTH stack pointer and that stack may be used if it is cleaned up
before exit from I/O routines. The R2 stack is a grow down in memory stack,
and is left pointing to the next free byte. This usage is consistant with SCRT
techniques. Note that R2 might not be set as the X register on entry to the
I/O routines, so do so if you intend to use it as such.

Registers 9,A,B,C,0 are reserved for use by FORTH and must be saved and
restored if they are used by your monitor's I/O routines. Pushing them on the
R2 stack is a good way of doing this.

OUTPUT ROUTINE
The character output routine is know as EMIT in FORTH. Data is passed to it
as a byte pointed to by R9. EMIT should increment R9, load the byte then
pointed to by R9 and pass it to an output device. It should then decrement R9
three times. See the example listing of EMIT that allows you to patch in the
output routine in your monitor.

8

CARRIAGE RETURN •
A routine must be provides to cause your output device to perform a carriage
return and a line feed when called. There are no parameters passed to it. Note
that if your output device automatically does a line feed when it receives a
carriage return, you should modify the patch so that it does not send a line
feed as well. An example is provided.

INPUT ROUTINE
The FORTH input routine is called KEY. It has no parameters passed to it. KEY
should read a character from the keyboard, increment R9 three times and store
the character read in at the memory location then pointed to by R9. It should
then decrement R9, and store a 00 there. Again, see the example provided.

BREAK ROUTINE
The FORTH routine that checks for a break condition is called QTERM. It should
increment R9 three time, store a 00 at the memory location pointed to by R9,
decrement R9 and store a 00 if there is a no break or a 01 if there is a break
condition. (If there is to be no break condition, then store a 00 all the
time.) The example routine is a dumny break routine that can be used to get
your system up initially.

ORDERING INFORMATION
FIG-FORTH information may be ordered from the following address-

FORTH INTEREST GROUP
P.O. BOX 1105

SAN CARLOS, CA.
94070

Prices are $15 in the USA and $18 anywhere else each for the listing or the
installation manual. These figures are in U.S. dollars and FIG requires
certified checks or money orders drawn on a U.S. bank; or a VISA or
MASTERCHARGE number and the expiry date.

ACE is selling fig-FORTH code to its members on three 2716 EPROMls or ELF II
format tape at $30 and $~ (Canadian or US) respectively. The intention of the
EPROM I s is to allow you to read tl)em into your system and use your monitor to
move the data into RAM starting at located a 0000. You do not have to have
EPROM memory addressed at memory location 0000 and in fact it is not even
particulary recommended. See the order page in this issue for our usual
ordering information.

WHERE TO GET HELP
Anyone Who has problems with getting FORTH up and running, or having any
general questions can feel free to write me. I I 11 answer all letters, and
even if I don't know the solutions to your problem 1 111 try to make
suggestions. (I would appreciate a stamped and addressed envelope from any
CANADIAN members that write).

I would also be interested in hearing from anyone now running FORTH who has
any comments or tips about the 1802 implementation. Future IPSO FACTO
articles will include information on how to get the FIG editor and RAM disk
simulation running, as well as same neat little tricks and ideas you may find
handy. Thanks to Ken Mantei for his FORTH notes, on which this article was
based, and without which I would have had a hard time getting FORTH running.

Good Luck ;S (<-- a little FORTH II in joke II)

9

,**
~ ;* *
~;* FORTH I/O CODE - FOR INTERFACE TO A RESIDENT MONITOR *,* *;* THIS CODE IS INTENDED TO PROVIDE AN EXAMPLE OF HOW *

;* TO INTERFACE THE I/O ROUTINES IN YOUR RESIDENT *,* MONITOR TO FIG-FORTH. CAREFUL STUDY OF THE REGISTER *
;* USAGE OF YOUR MONITOR IS NECESSARY 10 INSURE THAT *;* ANY OF THE RESERVED FORTH REGISTERS IT USES ARE *
;* SAVED BEFORE THE MONITOR ROUTINES ARE CALLED. *,* MODIFY THIS CODE ACCORDINGLY. *
;* *;**

;***;* SAMPLE INITIALIZATION CODE *;***
0000 FB 07 INIT: LDI START ; SET R(3) AS THE PC
0002 A3 F'LO R3 ;
0003 FB 00 LDI toO .,
0005 B3 PHI R3 ,
0006 D3 SEP R3 ;
0007 FB XY START: LDI CALL/256 ; SET UP seRT REGISTERS
0009 B4 PHI R4 ~ R(4) AND R(5)
OOOA F8 XY LDI RETURN/256 ,
OOOC D5 PHI R5 ; ANY OTHER INITIALIZE
OOOD F8 XZ LDI CALL ; COItE WOULD GO HERE
OOOF A4 PLO R4 ; TOO)
0010 F8 YZ LDI RETURN ;
0012 A5 PLO R5 ;
0013 30 SF DR :l:5E ; JUMP TO START OF FORTH

e ;***i* EMIT - CHARACTER OUTPUT ROUTINE *;***
.ORG :l:153D

1.53It 19 EMIT: INC R9 SETUP R('7>

153E E2 SEX R2 ;
153F 9A GHI RA ; EXAMPLE OF HOW TO SAVE A
1540 73 STXD ; RESERVED REGISTH~ IF USED
1541 SA GLO RA ; BY THE MONITOR OUTPUT ROUTINE
1542 73 STXD ;

1543 09 LDN R9 ; GET OUTPUT BYTE
1544 D4 WX ZY +CALL OUTPUT ; CALL MONITOR OUTPUT ROUTINE
1547 60 IRX ; EXAMPLE OF HOW TO RESTORE THE
1.548 72 LDXA ; REGISTER SAVED AT THE START
1549 AA PLO RA ; OF THIS ROUTINE
154A FO LDX ;
:l.54B BA PHI RA ;

154C 29 DEC R9 ;
154D 29 DEC R9 ; CLEAN UP F~ (9) FOR FORTH
154E 29 DEC R9 ;
154F DC SEP RC ; RETURN TO FORTH INTERPRETER

10
;***;* CR- CARRIAGE RETURN OUTPUT ROUTINE . *
;***

CR: SEX R2 ;
GHI RA ; EXAMPLE OF HOW TO SAVE A
STXD ; RESERVED REGISTER IF USED
GLO RA ; BY THE MONITOR OUTPUT ROUTINE
STXD ;

1550
1551
1552
1553
1554
1555
1557
155A
155C
155F
1560
1561
1562
1563
1564

E2
9A
73
8A
73
F8 OD
D4 WX ZY
F8 OA
D4 WX ZY
60
72
AA
FO
BA
DC

LDI
+CALL
l.DI
+CALL
IRX
LDXA
PLO
LDX
PHI

SEP

tOD
OUTPUT
tOA
OUTPUT

f<A

RA

RC

; LOAD A CARRIAGE RETURN
; PASS IT TO MONITOR OUTPUT
; LOAD A LINE FEED
; PASS IT TO MONITOR OUTPUT
; EXAMPLE OF HOW TO RESTORE THE
; REGISTER SAVED AT THE START
; OF THIS ROUTINE
;
;

RETURN TO FORTH INTERPRETER

1565 19
1566 19
1567 19
1568 E2
1569 9A
156A 73
156B 8A
156C 73

;**;* KEY - CHARACTER INPUT ROUTINE *
;**

KEY: INC R9 ; SET UP STORAGE AREA
INC R9 ;
INC R9 ;
SEX R2 ;
GHI RA ; EXAMPLE OF HOW TO SAVE A
STXD ; RESERVED REGISTER IF USED
GLO RA ; BY THE MONITOR OUTPUT ROUTINE
STXD ;

156D

1570
1571
1572
1573
1574
1575
1576
1577
1578
157A
157B

D4 ZX WY

60
72
AA
FO
BA
9F
59
29
F8 00
59
DC

+CALL

IRX
LDXA
Pl.O
LDX
PHI
GHI
STR
DEC
LDI
STR
SEP

INPUT

RA

RA
RF
R9
R9
too
R9
RC

GET INPUT FROM MONITOR ROUTINE

; EXAMPLE OF HOW TO roi:ESTORE THE
; REGISTER SAVED AT THE START
; Of THIS ROUTINE
;
;

; GET BYTE PASSED BACK FROM INPUT
; SAVE IT
; Cl.EAN UP STORAGE AREA,
;
;

157C
157D
157E
157F
1581
1582
1583
1584

19
19
19
F8 00
59
29
59
DC

;***,* QTERM - BREAK CONDITION TEST ROUTINE *
,***

QTERM: INC R9 , SAMPLE DUMMY BREAK ROUTINE
INC R9 ;
INC R9 ;
LDI tOo ;
STR R9 ;
DEC R9 ,
STR R9 ;
SEP RC ;

