1974

FIELD SERVICE TECHNICAL MANUAL

CPL

FIELD SERVICE TECHNICAL MANUAL

| 12 Bit | 16 Bit X | 18 Bit \triangle | 36 Bit X |
| :---: | :---: | :---: | :---: | :---: |

Title	Off-Line Testing of the LA 30				$\begin{aligned} & \hline \text { Tech Tip } \\ & \text { Number LA30 TT-\# } 1 \\ & \hline \end{aligned}$	
All	Processor Applicability	Author Cloutier/Walker		Rev	0	Cross Reference
X		Approval W. Cummins	Date	07/	1/72	

To ckeck out LA30 off-line (locally) you have to place a jumper from Al5R2 to ground. This jumper is located on the M7712 module which qualifies key board in to work. Also, let it be known that the first slot to the left of the wire frame is slot A and B05 respectively.

On the initial start-up of an LA30 head, some solenoids may not print immediately. This condition comes about when the head has been sitting idle for a long period of time. In most cases the solenoid will free itself during normal printing but if it doesh't it may have to be freed by hand. To free the solenoid by hand, proceed as follows:

1. Turn off the LA 30 power
2. With paper and ribbon in position and the platten closed, insert the end of a paper dilip through the hole in the rear of the solenoid and push gently against the solenoid spring.
3. Remove paper clip.
4. Check to make sure solenoid wire is not sticking in the ribbon.
5. Turn on LA30 power and print.
6. Once the solenoid starts printing run the head continuously for a minimum of two passes of the LA30 diagnostic.

NOTE: The longer the head is run there is less chance of this happening again.

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator LA3 0
	12 Bit \triangle	16 Bit \triangle	18 Bit X	36 Bit \triangle	

We have discovered that one shipment of DECwriter ribbons, which were over inked, were put into stock sometime around the first of the year. The ribbons can be identified by the lot $\# 35$ which is printed on each ribbon carton.

These ribbons will smudge badly and should be recalled from all field stock areas. Maynard and Westfield Stockrooms have already been purged.

PROBLEM CAUSE: Right margin switch (N / O contaph) figating into

	KEYBOARD SHORTS CAUSED BY PAPERCLIPS, ETC						Tech TinNumber HAJUM	
$\begin{aligned} & \text { All } \\ & \mathrm{X} \\ & \hline \end{aligned}$	Processor Applicability		Author	Davis/Barn		Rev	0	Cross Reference
			Approval	W. Cummins	Date	$11 /$	2/72	LK01-TT-1

Some LA30's in the Munich area have been found to be wired for 220 volts 60 cycles, resulting in a hot power supply, and low unregulated D.C. output voltages. We have seen this to cause line feed problems.

There is a jumper from the 2 mfd resonating capacitor to the transformer that selects the correct circuit to match the power frequency.

Capacitor to Tag 9 - 50 cycles/second
Capacitor to Tag 10- 60 cycles/second.

SUPPIFEMENTAL AATEAN 300 ms or less.
The carriage return themenspedifies than 300 ms or
However it appears that ofly G936 acceleratq due to the charshigolerance gf the qoonents on the G936, and will mopult in a loss or che cond character following a carripineturn.
An ECO will be issTEMOTHPto resolve this problem. In the mean time additional fill characters may be added following a CR.

OBSOLETE

This problem causes the line feed resistors to smoke on the which can damage the board as well as be embarrassing to the customer. ECO 8 was generated to correct this.problem, however, the value specified ($2 \frac{1}{2}$ amps) is too large so a $1 \frac{1}{2}$ amp s:low blow should be used.

COMPANY CONFDEMAL

CPL

	FIELD SERVICE TECHNICAL MANUAL				Option or DesignatorLA30
	12 Bit ${ }^{\text {x }}$	16 Bit X	18 Bit X	36 Bit X	

The LA30 line feed problem isdPresfirmantialmaAgTHOMsing one or more line feeds and as a result pyerprint the previous
 Field service stockroom. $X E C O L A 3 O$ O7/ \square MCN \square TECH TIP \qquad
\square OBSOLETE

This problem causes the machine to either think it is out of paper when it isn't or that it has paper when is doesn't. The only adjustment provided is the clearance hole of the microswitch, it therefore becomes necessary if the hole is not great enough to foreeably bend the actuating arm.

When the left-hand margin is properly set, the right hand margin will be set automatically. To adjust the margins, proceed as follows:

1. Observe location of switch (left hand), to see if the lever on the switch will hit the carriage at the correct attitude.and accuate the switch in the center of the 45* angle. See attached sketch for correct setting.
2. Prepare a length of paper from the LA 30 paper supply by drawing in a reference line in pencil or ink 0.0750 ± 0.010 inches in from the left hand sprocket hole center line. (Figure 5-7)
3. Using this paper, the margin in the printer will be set correctly when the left edge of the character " E " printed in the first position after a carriage return coincides with the center of the reference line.
4. The position of the first character is adjusted by loosening the splined set screw on the drive pulley and then rotating the drive pulley on the shaft extension to correct the error found in step 3. Retighten set screw to at least 14 inches/pounds before testing.
5. If the above conditions cannot be met, it is probable that the left-hand margin switch is damaged, worn, or improperly mounted. Readjust or replace the switch and repeat steps 2 and 3.
6. CAUTION: Check to see if set screw on timing belt pulley is stripped or loose. This also causes similar problems as Step 4. If so retighten or replace.
$C C=m t$

	FIELD SERVICE TECHNICAL MANUAL				Option or Designator LA3O
	12 Bit 8	16 Bit [x]	18 Bit [x]	36 Bit $[\square$	

Title	SETTING	LEFT AND	RIGHT MAR	IN	Continu			Tech T Number	$L A 30-T T-13$
All X	Processor Applicability		Author	Car1	1 cline		Rev	0	Cross Reference
			Approval	W.	cummins	Date	02	27/23	

Figure 5-7 Checking Left Margin

Figure 5-9 Stepping Motor Removal

COMPANY CONFIDETIAL

	FIELD SERVICE TECHNICAL MANUAL				Option or DesignatorLA30
	12 Bit X	16 Bit X	18 Bit X	36 Bit X	

The G936 clock accelerator does not meet the 300 ms carriage return spec required by the LA30.

Correction: Add three potentiometers to adjust high speed ramp, low speed ramp and high speed running rate. (ECO G936-00002)

Following is the adjustment procedure required for setting these three pots.

1. Place the modified G936 on an extender board.
2. Stall the print head by switching motor circuit breaker "OFF" while unit is running.
3. Place the scope probe on $S 2$ of $G 936$ module. Depress head warning switch (second micro switch from left) and adjust R7 (l00K bottom pot) to result in 3.0 milsec between pulses.

4. Release warning switch then adjust R4 (5 K middle pot) for 550 usec between pulses.

5. Switch main frame power off. Adjust Rl5 (5K Top pot) fully clockwise. Turn on motor breaker then switch main frame power on. Trigger sweep on G936 s2 then place second probe on C2 + (2.2uf CAP) on G936; while unit is printing adjust Rl5 for a negative going ramp of 55.0 milsec.
6. Check time of PRINT INH L on M7710 (Al2-S2) to be less than 300 milsec .

SUPPLEMENTAL ACTION TAKEN

\square MCN
\square TECH TIP
\square Obsolete
PAGE 305
PAGE REVISION
PUBLICATION DATE

1. Current Mode (20 ma)

+XMIT	Cl	5	(White)	7	$\mathrm{REC}+$
-RET	D1	2	(Black)	3	RET -
+ REC	J1	7	(Green)	5	XMIT +
-RET	M1	3	(Red)	2	RET -

REC		(Black)	$5 \mathrm{XMIT}+7$
	$+0$	(White)	2 RET -
		(Green)	3 RET -
XMIT		(Red)	$7 \mathrm{REC}+\mathrm{J}$
	+ ${ }^{-}$	BC04-R	

2. EIA Level

COMPANY CONFDEMTIL

Appendix I

PROCEDURE FOR ADJUSTING LINE FEED SOLENOID

SUMMARY: Find a range of values within which the line feed solenoid operates properly (diagnostic test passes). Use the center of the range for the final adjustment.

DETAILED PROCEDURE

1. On line feed solenoid, loosen adapter locknut. (Index \#79 in LA30 manual, figure A-1.)
2. With solenoid in rest position, rotate the solenoid armature (CCW as viewed from top) until the tooth of the pawl contacts the ratchet tooth. Mark a reference line on the solenoid and armature.
3. Back the armature off (CW) $3 / 4$ turn and lock it in place with the locknut.
4. Run part 2 of the line feed quality test in the exerciser test* and note if it passes the test. If it does (see note at end of section). If it does not pass the test, then do the following:
a. Loosen locknut
b. Back armature (CW) $1 / 8$ of a turn
c. Run diagnostic test

If it does operate properly this is the lower limit of your range; if not, keep testing at increments of $1 / 8$ until you find the first place where it operates properly. (Note this as your lower limit.)
5. Having found your lower limit, at increments of $1 / 8 \mathrm{cW}$, apply the diagnostic test until it stops operating properly (this is the upper range of acceptance).
(Page 12 intentionally left blank)

PAGE 308	PAGE REVISION 0	PUBLICATION DATE	March 1974

6. Finally, adjust armature at the halfway distance between operating limits that were found.

NOTE: Turn armature back CCW at increments of $1 / 8$ th turns and do the diagnostic test until it is not operating properly (this is your lower limit now). Go to step 5 and continue.
*Note: Maindec 08 DHLLA-B, Decwriter (LA30) control-exerciser test. For an 11 system toggle in program given in Appendix III. The diagnostic for the 11 system is being updated to include the new test.
In a PDP-15 system use MAINDEC-15-DZLAA-B, LA30 diagnostic as follows:

1. Set ACS 03 and $05=1$

Set ACS $15=1$ if 300 baud
Set ACS $16=1$ if LA30P
2. Start program at 202. When the line feed quality test begins, raise ACS 02 to lock onto this section, and proceed with your adjustments. (The LFQ test is preceded by 80 column margin and carriage return tests. Either of these may be aborted by typing "Control C").

TECH. TIP

LA30 Line Feed (L/F) adjustment.

NOTE: This adjustment is for IA30's using one or two part paper.

First: Follow the procedure outlined in Appendix I for adjusting the L/F solenoid.

Second: If the L / F still does not operate correctly, follow the procedure outlined in Appendix II.

Third: If the L / F still does not operate correctly, change the L/F solenoid assembly, i.e. DEC Part Numbers:

12-11026
12-10473
12-10495
90-09061
12-10496
12-10342
90-06563

Note: Before putting the parts together check that part number 12-10473 (spring) fits over part number 90-09061 (nut) loosely. (At least . 010" clearance.) Part number 90-09225 (mylar washer) is not part of the assembly. It has been taken out by ECO \#71.

PROCEDURE FOR CHECKING THE ELECTRICAL PORTION OF THE L/F SYSTEM.

Examine the signal on the terminals of the G381 module while local line feed switch is depressed.

Terminal
 Waveform
 Specification

G381-TB1

G381-TB4

These waveforms indicate that the line feed solenoid is receiving the proper electrical signal.

PAGE 311

PAGE REVISION 0

Appendix III

Toggle in the following program for an $11 / 05,11 / 20$ and $11 / 45$. (This will serve as a test for line feed until the 11 diagnostic is updated).

Location	Data
0	012700
2	000030
4	012701
6	177564
10	010102
12	005722
14	005003
16	105711
20	100376
22	012712
24	000015
26	010005
30	006205
32	006205
34	006205
36	060500
40	010004
42	005304
44	100404
46	010405
50	005305
52	100773
54	000775
56	105711
60	100376
62	012712
64	000012
66	105711
70	100376
72	012712
10	000134
10	005203
	022703
2	000040
4	

| Title | LA-30 Special Tools | | Tech Tip
 Number |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- |
| PA30 TT \#17 | | | |

When attempting repair or adjustment, a special tool is needed. Lack of a bristol wrench will prevent any adjustment of the left hand margin or installation of the carriage stepping motor. The following bristol wrench has proven adequate, or a complete set can be ordered under the DEC part number.

DEC NUMBER
29-16131

BRISTOL NUMBER
DA-096

Title	LA30 Voltage \& Hertz Conversion Chart			$\begin{array}{\|l\|} \text { Tech Tip } \\ \text { Number LA30-TT-抯8 } \\ \hline \end{array}$
All	Processor Applicability	Author Jerry Sarasin	Rev 0	Cross Reference
X		Approval Chris Ball	Date 1-29-74	

LA30 VOLTAGE \& HERTZ CONVERSION CHART
(CHANGES TO H735 POWER SUPPLY PER PRINT SET
PRIMARY TERMINAL CONNECTIONS
LA30 CONFIGURATIONS
INPUT VOLTAGE JUMPERS LINE CONN.

$+15 \pm 1 \mathrm{~Hz}$			
115 V 60 Hz	$4-7,5-2$	4,5	PA-CA-EA
240 V 60 Hz	$2-7$	4,5	PB-CB-EB
115 V 50 Hz	$4-8,5-1$	4,5	PC-CC-EC
240 V 50 Hz	$1-8$	4,5	PC-CD-ED

SECONDARY TERMINAL CONNECTIONS

OUT PUT CONN, IUMPERS
POWER SUPPLY
W/RATINGS

-12-15-18	-	15-16.6 VDC	
		8A. 60 Hz	PA-CA-EA
14-15-16	-	10-11.5 VDC	$\mathrm{PB}-\mathrm{CB}-\mathrm{EB}$
		8 A . 60 Hz	
11-15-19	-	15-16.6 VDC	
		8A. 50 Hz	PC-CC-EC
13-15-17	-	10-11.5 VDC	PD-CD-ED
		8 A . 50 Hz	
CAP. ($2 \mathrm{MF}-660 \mathrm{~V}$)	10	60 Hz	PA-CA-EA-PB-CB-EB
CAP. (2MF-660V)	9	50 Hz	PC-CC-EC-PD-CD-ED

NOTE: For input voltages 200VAC and above replace 5AMP Circuit breaker (12-10191-1 with 2.5 AMP circuit breaker (12-10191-2).

| PAGE 314 | PAGE REVISION 0 | PUBLICATION DATE January 1974-4 |
| :--- | :--- | :--- | :--- | :--- |

CONVERSION OF LA30 PARALLEL TO LA30 SERIAL*
PARTS REQUIRED:

PART NUMBER		DESCRIPTION	QTY
$74-9541$		Serial Bezel	1
$54-9914-2$		Serial Switch Ass'y	1
M7389	Module	1	
M7731	Module	1	
M598	Module	1	
M973	Module	1	
BC05F-15	Cable	1	
$12-2116-1$	Light	1	
$90-07129$	Clip	1	

PROCEDURE:

1. Remove Parallel Keyboard Bezel and Switch Ass'y from machine.
2. Remove Switch Assembly from Keyboard Bezel.
3. Pre-Assemble Serial Switch Ass'y to Serial Bezel using same hardware used on Parallel Switch Ass'y.
4. Install Serial Keyboard Bezel and Switch Ass'y onto base, using same hardware used on Parallel Asst I.
5. Remove G8004 Module from Logic (Slot Aø8).
6. Insert M7389 Module into Slot $A / B-20$.
7. Insert M7731 Module into Slot $A / R-19$.
8. Insert M598 Module into Slot A-18.
9. Insert M973 Module into Slot B-18.
10. Insert one end of BC05F-15 Cable into M973 Module.

NOTE: The above procedure assumes that the parallel LA30 has the latest revision which is as follows:

1. New style Logic Hinge (90 degree bend on hinge that fastens to control box) (12-10908).
2. New style Rear Door accomodate new logic hinge (74-9491).
3. ECO \#75 is installed in machine and logic to K rev.

* LA30PA-PB-PD to LA30CA-CB-CC-CD.

CONVERSION OF LA30P T0 LA30E*

PARTS REQUIRED:

PART NUMBER	DESCRIPTION	QTY
$74-9541$	Serial Bezel	1
$54-9914-2$	Switch Ass'y	1
M7389	Module	1
M7731	Module	1
M594 (REV "B")	Module	1
M970	Module	1
BC01R-25	Cable	1

PROCEDURE:

1. Remove parallel keyboard bezel and switch ass'y.
2. Remove switch ass'y from keyboard bezel.
3. Pre-assemble serial switch ass'y to serial bezel using same hardware used on parallel switch ass'y.
4. Install serial keyboard bezel and switch ass'y to base.
5. Remove G8004 module from logic ($A \varnothing 8$).
6. Insert M7389 into slot $A / B /-20$.
7. Insert M7731 into slot $A / B-19$.
8. Insert M594 into slot A-18.
9. Insert M970 into slot B-18.
10. Insert one end of BC01R-25 into M970 module.

NOTE: The above procedure assume that the parallel LA30 has the following parts.

1. New logic hinge (12-10908).
2. New style door (74-9491).
3. ECO \#75 installed in unit.
*LA30PA-PB-PC-PC to LA30EA-EB-EC-ED.

| PAGE 316 | PAGE REVISION 0 | PUBLICATION DATE January 1 -974 |
| :--- | :--- | :--- | :--- |

CONVERSION OF LA30 SERIAL TO LA30 PARALLEL*
PARTS REQUIRED:

PART NUMBER	DESCRIPTION	QTY
$54-9542$	Parallel Bezel	1
G8004	Parallel Switch Ass'y	1
$12-2116-1$	Module	1
$90-07129$	Light	1
	Clip	1

PROCEDURE:

1. Remove serial keyboard bezel and switch ass'y from unit using the same hardware used on the serial ass'y.
2. Remove switch ass'y from keyboard bezel.
3. Pre-assemble parallel swtich ass'y to parallel keyboard.
4. Install parallel keyboard bezel and switch assy onto base.
5. Remove M7389, M7731, M598, M973, and BC05F-15 cable from unit.
6. Install G8004 module into Slot Aø8.

NOTE: The above procedure assumes that the serial unit has ECO \#75 installed and the logic is up to K revision.
*LA30CA-CB-CC-CD to LA30PA-PB-PC0Pd.

| Title | Conversion of LA30C to LA30E | | Tech Tip
 Number | LA30 TT \# 22 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

CONVERSION OF LA30C TO LA30E*

PARTS REQUIRED:

PART NUMBER	DESCRIPTION	QTY
(REV "B")	Module	1
M970	Module	1
BC01R-25	Cable	1

NOTE: The above parts constitute an option called DF11A.
PROCEDURE:

1. Remove M598, M973, and BC05F15 cable from unit.
2. Insert M594, M970, and BC01R-25 into slots A-18, B-18, respectively.
3. Attach BC01R-25 to M970 Module.
*LA30CA-CB-CC-CD to LA30EA-EB-EC-ED.

PAGE 318	PAGE REVISION	0	PUBLICATION DATE January 1974

SUBJ: INSTRUCTIONS FOR INSTALLING DURA HEAD ON
 IA30 DECWRITERS

1. On slot A5 (head cable connector M963), unsolder the 3 black wires. These wires connect to ground lugs on power supply.
2. Two wires will be crimped together on the power supply end. These may, or may not both go to slot A5. One may go to the chassis, insure that the wire from the chassis physically remains connected. (Clip extra black wire if needed.) Remove the 3 black wires from the power supply to module slot A5.
3. Install green wire from module A5, (any of the pins that a black wire was disconnected from will do), and run to the power supply +10 V lug. Use the double spade lug included if necessary.
4. On older LA30s, insure there is still enough clearance to close module logic rack without interfering with +10 lugs.
5. Install new head in the same manner as old head. Use $1 / 2$ inch screws and washers included. The new head is a different thickness.
6. Adjust the head gap to .012", using feeler stock. The new head has a lip on both the top and bottom. Use caution to insure feeler stock is not on the lips. (see diagram 2)

| PAGE 319 | PAGE REVISION 0 | PUBLICATION DATE jan 74 |
| :--- | :--- | :--- | :--- |

-- NOTES --

